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ABSTRACT

We propose a new stochastic model of infectious disease propagation. This model tracks individual outcomes,
but does so without needing to create connectivity graphs for all members of the population. This makes
the model scalable to much larger populations than traditional agent-based models have been able to cope
with, while preserving the impact of variability during the critical early stages of an outbreak. This contrasts
favorably with aggregate deterministic models, which ignore variability, and negates the requirement to
assume “convenient” but potentially unrealistic distribution choices which aggregate stochastic models need
in order to be analytically tractable. Initial explorations with our new model show behaviors similar to
the observed course of Ebola outbreaks over the past 30+ years—while many outbreaks will fizzle out
relatively quickly, some appear to reach a critical mass threshold and can turn into widespread epidemics.

1 INTRODUCTION

Ebola is a virulent disease, with an extremely high mortality rate. It is endemic in the regions near the Ebola
river in the Democratic Republic of the Congo, where the first outbreak noted by the outside world occurred
in 1976. It is found in the local animal populations, including bats and chimpanzees, and sporadically
crosses over into the human population. Prior to 2013, there were 25 outbreaks in the human population that
would flare up in hot-spots and then die out. The current outbreak started in 2013 in Guinea (WHO Ebola
Response Team. 2014) and grabbed world-wide headlines by becoming a pandemic, spanning multiple
countries and infecting a conservatively estimated 26 thousand people (World Health Organization 2015).

The level of concern has declined given the failure of the disease to spread to the rest of the world. As
of this writing, a few isolated cases have been identified in the US and in Spain, but were quickly identified,
isolated, and cared for without triggering further widespread outbreaks. However, if the disease were to
evolve into a pneumonic form or one with a longer onset between exposure and becoming symptomatic, or
if it were to get a significant foothold in a densely populated city outside of Africa, our ability to identify,
track, and isolate exposures would quickly be overwhelmed.

2 MODELING BACKGROUND

Analytical models for epidemiology date back to the early 20th century, pre-dating modern computing
(Kermack and McKendrick 1927). These so-called “compartmental” models categorize individuals com-
prising the population into subsets that reflect their current status. Various categorizations can be used, but
a common one for diseases such as Ebola, where survivors acquire immunity, is the so-called SEIR model.
The population is broken into the following classifications: Susceptible (S) is the set of people who have
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not contracted the disease, Exposed (E) is the set of people who have contracted the disease but cannot yet
transmit it, Infectious (1) is the set of people who are capable of transmitting the disease to susceptibles, and
Removed (R) is the set of people who are removed from the process by death or recovery. The categories
describe the progression of the disease for each individual, but the models describe the transfer of portions
of the population from category to category using rate descriptors and differential equations as a continuous
approximation to what is in reality a discrete process happening to individuals. The resulting systems of
equations could be solved analytically and thus represented a major step forward in understanding disease
propagation. One major drawback of these models is that the aggregate approximation is questionable with
smaller populations. Additionally, as we study lower levels of infection, variation can play a significant
role in the progression of the disease. In short, there is a need for stochastic models.

Differential equation based models have been extended to include stochastic behaviors, although doing
so requires Markovian assumptions to preserve analytic tractability. A very recent example is the general
epidemic model EPIMOD developed by Washburn (2015), that motivated our work.

Both deterministic and stochastic variations of the aggregated compartmental models can be and have
been implemented computationally using time-stepped models. At every delta-, the rates describing
aggregate movement from one compartment to another are crossed with the compartment populations to
calculate the number of people who get moved between each of the compartments. Note that this is a
discretized approximation of a continuous model of a discrete process. The amount of error introduced
by these approximations can be reduced by using smaller values of delta-z, but some error is unavoidable,
and error propagation is cumulative. An example of a stochastic SEIR-like model appears in Broeck et
al. (2011), who include a graphical user interface for setting up, executing, and visualizing the results of
simulations.

Agent-based models have also been used to study disease propagation by tracking the progression of
the disease in individuals. All members of the population other than a small pool of initially infected people
start off as susceptibles. The disease then progresses through the various stages for each infected person as
time advances. Upon becoming infectious, the agent can potentially expose any susceptible agents amongst
their contact pool to the disease, until such time they qualify for “removal” by death or recovery. Adding
randomness is fairly easy with this approach. The times spent in each state can be random, as can the
likelihood and timing of transmitting the infection to each of the potential contacts. Drawbacks to this
approach include (1) the need to specify either a connectivity graph between the various agents or use
the dynamics of mutual discovery in a spatial representation; (2) the fact that most agent-based modeling
platforms are time-stepped, which has been demonstrated to introduce modeling artifacts and potential
errors (Al Rowaei, Buss, and Lieberman 2011); and (3) the consequent need to track and evaluate the status
of every agent at every time step. Because of these issues, agents are often used to represent groups rather
than individuals to offset the otherwise rapid growth of run times.

One example of agent-based modeling appears in Andradoéttir et al. (2011), who develop a detailed
simulation of influenza spread in Hamilton (Ontario) Canada, a city of roughly 650,000 people. They focus
on the average overall illness attack rates for a variety of vaccine intervention conditions. They generate
detailed attributes for every person in the population, including three or four contact groups to which
the person belongs: household; neighborhood (approximately 500 people); community (approximately
2000 people); and daycare, school, or workplace. The agents go through an latent/incubation stage, and
one of two potential infectious stages (symptomatic or asymptomatic), before being removed from the
model. Each day, susceptible agents have the opportunity to become infected in their contact groups,
where the daily probability of infection within each group is based on the number of infectious contacts
and their per-contact influenza infection transmissions. Note that because state changes and transmission
probabilities are evaluated on a daily basis, this is a time-stepped agent-based model. Although there is a
large total population, each agent’s potential contacts are much more limited in number. A similar approach
is taken by Grefenstette et al. (2013) in their Framework for Reconstructing Epidemic Dynamics (FRED)
platform. The authors use a fixed simulation step of one day, but suggest that this does not appear to be a
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limitation except for diseases with extremely short latency and infectious periods, or extremely short-period
intervention strategies.

Other agent-based models have been proposed. For example, Parker and Epstein (2011) develop a
Global-Scale Agent Model (GSAM) software platform for agent-based epidemic modeling. It is a “highly
parallel distributed model” that evaluates agents and their travel itineraries to track epidemic spread.
Written in Java, its U.S. submodel with 300 million agents executes in “roughly twenty minutes.” The
FIuTE simulation of Chao et al. (2010) models the spread of influenza, using two time steps per simulated
day to allow for differences in daytime and nighttime social interactions, and restricting the community
sizes within which agents interact to less than 3000 agents to improve model scalability.

Discrete event formulations also exist. For example, Perumalla and Seal (2012) present a discrete event
model of a reaction-diffusion simulation model of epidemic propagation. They use optimistic scheduling
with rollback to achieve massive parallelization. Their reaction-diffusion model uses an abstract geographic
structure, where the disease propagates as individuals travel between locations within a region, or between
geographic regions. They observe that systems characterized by many locations containing smaller numbers
of individuals are computationally more efficient than systems characterized by fewer locations with larger
populations. Their focus is on model scalability in terms of speed and memory, rather than the dynamics
of disease propagation.

The papers mentioned above involve creating a structure for modeling epidemics. Papers that seek to
model specific epidemics are also available, such as the Ebola models of Merler et al. (2015) and Siettos
et al. (2015). Others have focused on fitting models to cumulative incidence data, or estimating model
parameters as incidence data become available. King et al. (2015) discuss the potentially large errors in
parameter estimates that can be masked when fitting deterministic models to cumulative incidence data.
They go on to recommend against the use of aggregated models, in favor of checking the effects of violated
model assumptions such as independence, and to state that stochastic models are generally preferable to
deterministic ones.

3 AN EVENT-BASED SEIR FORMULATION

All these considerations motivated us to pursue development of a new epidemic modeling paradigm.
We wanted to avoid aggregation, include stochastic behaviors, avoid unnecessarily restrictive modeling
assumptions, and eliminate the artifacts associated with time-stepped modeling. At the same time, we wanted
to retain the simplicity and extensibility of the SIR/SEIR class of epidemic models, and have a model that
is scalable. Our view of scalability focuses on the size of the population that can be studied, rather than the
degree of parallelization that can be achieved.

We protoyped our model in the Ruby programming language (Flanagan and Matsumoto 2008, Ruby
Community 2015) using discrete-event scheduling. We describe the model, which has quite simple logic,
with an event graph based on the notation of Schruben (1983). We present our model in Figure 1.

§
exposed

Figure 1: An event graph representation of the Ebola model’s event scheduling relationships.
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The events, and their associated state transitions and scheduling behaviors follow. Events other than
Init and end_sim are scheduled on a per-agent basis.

Init : Set all state variables to initial values and schedule when each of the initially
infected members of the population will become infectious.
e For each of the initially exposed agents, determine how long until that agent
becomes infectious and schedule an infectious event with a delay of .
infectious : This agent can now infect susceptibles in their pool of contacts.
e Determine ¢, the time until this agent is removed from the infectious state by
either death or recovery.
e Schedule a removal event to occur in ¢, time units.
e Determine the pool size of potential susceptible contacts for this agent.
e For each potential contact calculate 7., the amount of time until that contact would
be exposed.
e Determine Boolean condition c¢;: f, < t,.
o If ¢ is true, this contact will be exposed to the current agent while that agent
remains infectious. Schedule an exposed event for this contact.
exposed : A new agent is exposed to the infection. The new agent is now a carrier of
the disease, but is not yet infectious.
e Schedule an infectious event for this agent # time units after their exposure.
removal : This agent is no longer infectious.
e Decrement the number of currently_ infected agents.
e Determine Boolean condition ¢;: currently infected == 0.
e If condition ¢; is true, schedule the end_sim event.
end_sim : Print final reports and terminate the simulation.

Interested readers can find more information about implementing event graph models in Sanchez (2006).

4 DISCUSSION

This model differs from prior models in several important respects. First, this model tracks the state of
individual agents, but does so using a discrete-event scheduling framework. This means that it avoids
the order of execution issues which time-stepped models are subject to, and which Al Rowaei, Buss, and
Lieberman (2011) demonstrated can alter model behaviors in significant ways. Our dynamic event-oriented
approach also creates significant runtime efficiencies relative to time-stepped models, since evaluating the
number of state transitions for active agents can be orders of magnitude less than evaluating the pairwise
interactions of all agents in the population at every delta- increment of the simulation clock.

Second, susceptibles are maintained implicitly by the model. Agents are not instantiated until such
time as they become exposed to the disease, and are disposed of by removal from the pool of infecteds.
This coordinates with the event-scheduling aspects of the model to greatly reduce both the number of
events to be tracked and the memory footprint associated with the model state. This is made possible
by doing dynamic instantiation of each agent’s contact pool when the agent becomes infectious. Upon
becoming infectious, we generate a pool size for the set of contacts. We have used a Poisson distribution
for the pool size. As the model progresses, the Poisson rate is scaled by the proportion of the population
which remains susceptible. The effect of this is to stochastically reduce the typical pool size for agents
who become infected later in the simulation because many other agents have already been eliminated as
potential infectees due to death or prior infection.

Agent-based models are not the only ones that suffer from lack of scalability. Washburn (2015) develops
a mixed epidemic model in the form of a a continuous time Markov chain. He says “in spite of considerable
previous work, there is still no practical method of computing the exact, complete SIR case count distribution
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for large [values of the initial number of susceptibles].” He shows that the computational effort required
to determine the exact distribution for the lower tail of the total number infected is bounded. Throughout
his paper, but particularly for large populations, Washburn (2015) emphasizes “estimating the average case
count, since it is anticipated that minimizing that count will be the goal of any countermeasures taken.”

Another characteristic of our approach is that we can incorporate stochastic behavior into any event,
state transition, and scheduling behavior. For example, we currently use a Poisson process to generate
variation in the number of potential contacts associated with each agent. This can yield very different
results than assuming a fixed number of exposures for each infected person.

5 EXAMPLES

Our objective is to demonstrate the variety of epidemic behaviors that can be obtained from a single
parameterization of our model, rather than attempt to calibrate it to a specific disease or outbreak. We
illustrate our model using a case with a population of 100,000 agents with one initially infected person.
We ran the model for 5,000 replications at three different transmission rates: 0.8, 1.4, and 2.0 average
new exposures per infectious agent. Histograms and summary statistics are given in Figure 2. Note that
the scales for the histograms vary by orders of magnitude. The 90" percentile for the lowest transmission
rate is 8 people—less than 0.01% of the population. In contrast, with transmission rates of 1.4 and 2.0,
the 90" percentiles are approximately 34% and 69% of the population infected, respectively—indicating
that the outcomes are potentially devastating.

Mean:  3.73 Mean: 10805 Mean: 44095
Std Dev: 6.61 Std Dev: 15745 Std Dev: 33031
0 20 40 60 80 100 120 VP T I LTSS VS S S
NN SN SN N N S &S S
TN DS D S S S S N
(a) Transmission Rate = 0.8 (b) Transmission Rate = 1.4 (c) Transmission Rate =2.0

Figure 2: Epidemic distributions for transmission rates of 0.8, 1.4, and 2.0, in a population of 100,000
with one initial infection.

Deterministic aggregate models report only one outcome for a given transmission rate. With stochastic
models, we see there is some potential good news—many potential epidemics fizzle. With a transmission
ratio of 0.8 the epidemic fizzled 100% of the time. The results are strikingly bimodal for the higher
transmission rates: the epidemic fizzled 68% of the time with a transmission rate of 1.4, and 36% of the
time with a rate of 2.0. In contrast, a deterministic SEIR model will always flare with a transmission rate
greater than 1.0. Given the bi-modal nature of many of these configurations, it is clear that means-based
analysis tells a very misleading story about what might happen. Note that the sample means for the two
highest transmission rates in Figure 2 are far away from either mode, making them singularly unsuitable
for discussing likely cases.

Although there have been a number of smaller Ebola outbreaks in sub-Saharan Africa since 1976, most
of them run their course infecting anywhere from a handful to a few hundred cases. However, the 2013
epidemic flared into a pandemic (Corum 2014). Although we have not attempted to calibrate our model
to the Ebola epidemics, our model’s qualitative behavior corresponds to the pattern observed in the real
world. Relatively few outbreaks actually flare to pandemic levels—and even for situations with quite high
transmission rates, pandemics are not a given.
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Figure 3: Distributions of fizzled epidemic behavior (in blue, at most 10% of the population infected) and
flared epidemic behavior (in red, over 10% of the population infected) for transmission rates of 1.4 and
2.0, in a population of 100,000 with one initial infection.

Now let’s take a closer look at the fizzle and flare distributions in Figure 3, where we have separated
the original distributions into distinct histograms based on whether or not 10% of the population became
infected. Once again, the scales differ. Note that all of the fizzle distributions are skewed right, indicating
that low infected counts are most likely to occur. A transmission rate of 0.8 was sufficiently low that no
flares happened in the 5,000 replications. By contrast, with a higher transmission rate, once a critical mass
of infected agents is achieved, a major epidemic is a virtual certainty. This corresponds more closely to
the predictions based on aggregate models. Still, the histograms provide additional information about the
variability that can occur in the end result.

6 CONCLUDING REMARKS

In a recent paper, Lucas et al. (2015) assert that it is time for simulation, rather than a stylized analytical
model, to be considered a first resort for modeling complex phenomena. Specifically, they point out that
(1) analytical models often make oversimplifying assumptions for modeling convenience, while simulation
models need not; (2) simulation models are computationally tractable, in the sense that simulation results,
such as graphs of relationships, can be made as precise as desired; and (3) simulation models lend themselves
to large-scale computational experiments.

Our discrete-event, stochastic, agent-based simulation model makes fewer assumptions than current
analytical models: it does not require exponential transition times between different disease states. It
reflects the wide variety of trajectories that an epidemic may follow—a single starting configuration yields
a distribution of end states. In contrast, deterministic models yield single trajectories—depending on the
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starting conditions, the epidemic will always fizzle or always flare. Historically-accepted models often
fail to capture even the qualitative behavior of outbreaks. Given that deterministic models often predict
disaster, which then fails to materialize, they have fostered an attitude of skepticism towards well-intended
public health warnings. Stochastic models such as ours allow for risk assessment.

Second, even for the deterministic SEIR models, exact distributional results of epidemic spread are
not possible to obtain computationally in a reasonable amount of time. Consequently, despite all the
simplifying assumptions, the results must be approximated. Our simulation model scales more readily
than time-stepped models, and so it is more computationally tractable. Thus we can explicitly assess the
probabilities of different epidemic sizes, and by replicating the experiment we can make these results as
precise as desired.

As a result of the differences highlighted above and in Section 4, the new model is not subject to the
inaccuracies introduced as modeling artifacts in time-stepped models. The model prototype, implemented
in a singly-threaded scripting language, is capable of simulating an epidemic in a population of one million
in less than 40 seconds on a modern laptop, i.e., it is extremely scalable. We further anticipate that the
model will run one to two orders of magnitude faster when implemented in a compiled language, and a
well-implemented parallelized version might achieve even greater speed-ups.

With simulation we are not constrained in our distributional choices. We can construct the model
using realistic distributions when data are available, and use data farming techniques to explore the impact
of various distributional choices and parameterizations when data are unavailable. Last, but certainly not
least, we can look at a much richer and more informative set of output measures, such as quantiles of the
distributions of case counts or epidemic duration. Given the bi-modal nature of many scenarios, it is clear
that means-based analysis gives a very incomplete and misleading representation of what is happening.

Although we have not done so in this paper, our model can easily be expanded to incorporate additional
compartments that represent disease states or subpopulation groupings, and interventions that change the
dynamics of the system. potential contacts for each agent. These are areas of ongoing exploration.
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