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Preface

Simulation models are abstractions of a real-world, or proposed real-world, 
system. In other words, the models do not contain every aspect and detail 
of the system that they are attempting to imitate. A model of military com-
bat might range from a high-level representation to a very detailed model. 
In the former, much detail will be either omitted from the model or sub-
sumed into high-level concepts. Meanwhile, a detailed model might focus 
on a specific aspect of combat, and even then not all details will be included, 
either because there is insufficient knowledge about them or because it is not 
deemed necessary to model them. The same applies to models in the busi-
ness (e.g., manufacturing, service, supply chain, and transport) and health 
sectors. A model of a complete supply chain might include every partner in 
that chain but contain only scant detail about the individual partners. A more 
detailed model might focus on just a few partners, representing in detail the 
processes and decisions involved. A model of a hospital ward might include 
much detail about the day-to-day running of the ward, but when modeling 
the regional health service, that same ward may be subsumed into a high-
level model of the hospital.

What we are observing is that during the development of simulation 
models, a set of decisions is made concerning what to include and what to 
exclude from the model. The modeler must decide which model to develop 
out of a nearly infinite set of potential models that could be chosen for the 
system that is being studied. This process of abstraction is what is referred 
to as conceptual modeling.

So, conceptual modeling is not about how to implement, or code, a model 
on a computer, but it is about how to decide what to include in a model and 
what to exclude from that model. Unfortunately, this aspect of simulation 
modeling is not well understood. There is much written on how to code sim-
ulation models and on the analysis of simulation output, but there is very 
little written on conceptual modeling. This is despite the recognition that 
conceptual modeling is a vital element in performing simulation studies. A 
good conceptual model lays a strong foundation for successful simulation 
modeling and analysis.

There have been sporadic bursts of interest in the topic of conceptual model-
ing over the last four or five decades, but never a concerted effort. However, 
more recently there has been an increased concentration on the topic, particu-
larly through workshops (e.g., the biennial meeting of the Conceptual Modeling 
Group, UK), special-interest groups (e.g., the NATO Conceptual Modeling 
Group), conference sessions (e.g., the Winter Simulation Conference, Operational 
Research Society Simulation Workshop, and Simulation Interoperability 
Workshop), and journal special issues (e.g., Journal of Simulation 1(3), 2007). 
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The purpose of this book is to build upon these efforts and to provide a 
comprehensive view of the current state-of-the-art in conceptual modeling 
for simulation. It achieves this by bringing together the work of an inter-
national group of researchers from different areas of simulation: military, 
business, and health modeling. In doing this, we look at a range of issues in 
conceptual modeling: 

What are conceptual models and conceptual modeling?•	
How can conceptual modeling be performed?•	
What is the role of established approaches in conceptual modeling?•	
How is conceptual modeling performed in specific modeling •	
domains?

We cannot claim to fully answer any of these questions, but we are able to 
present the latest thinking on these topics. The book is aimed at students, 
researchers, and practitioners with an interest in conceptual modeling for 
simulation. Indeed, we would argue that all simulation modelers have 
an interest in conceptual modeling, because all simulation modelers are 
involved, either consciously or subconsciously, in conceptual modeling.

The focus of the book is on discrete-event simulation (Pidd 2005; Law 
2007), which for reasons of simplicity is described as just “simulation.” In 
this approach, the dynamics of a system are modeled as a series of discrete 
events at which the state of the system changes. It is primarily used for mod-
eling queuing systems that are prevalent in a vast array of applications in the 
military, business, and health sectors. Despite this focus on discrete-event 
simulation, many of the ideas will have wider applicability to other forms 
of simulation (e.g., continuous simulation, system dynamics) and modeling 
more generally.

In reading this book, it will become clear that there is no single agreed defi-
nition of a conceptual model or conceptual modeling. The chapters also pres-
ent some quite different perspectives on what conceptual modeling entails. 
These differences are perhaps most stark between those working with mil-
itary models and those working in business and health. This is largely a 
function of the scale and complexity of the models that the two groups work 
with, military models generally being much larger in scale (Robinson 2002). 
As editors of the book, we have made no attempt to reconcile these differ-
ences. The state-of-the-art is such that we are not yet in a position to propose 
a unified definition of a conceptual model or a unified approach to concep-
tual modeling. Indeed, it seems unlikely that such a goal is achievable either 
in the short term, given our limited understanding of conceptual modeling, 
or even in the long term, given the range of domains over which simulation 
is used and the complexity of the conceptual modeling task. What this book 
does provide is a single source in which different perspectives on conceptual 
modeling are presented and a basis upon which they can be compared.
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The book is split into six parts, each focusing on a different aspect of concep-
tual modeling for simulation. Part I explores the foundations of conceptual 
modeling. In Chapter 1, Robinson discusses the definition of a conceptual 
model and conceptual modeling, the purpose and requirements of a con-
ceptual model, and the guidance that is given in the literature on conceptual 
modeling. The ideas that are presented provide a backdrop for the rest of the 
book. Brooks (Chapter 2) explores the relationship between the level of detail 
and complexity of a model, and the performance of that model. He identifies 
eleven “elements” that can be used for measuring model performance. In an 
experiment, he investigates the relationship between complexity and model 
performance. In Chapter 3, Wang and Brooks follow an expert modeler and 
a number of novice modelers through the conceptual modeling process. As 
a result, they are able to identify the process followed and differences in con-
centration on the various elements of conceptual modeling.

Part II includes five chapters on frameworks for conceptual modeling. 
A framework provides a set of steps and tools that aim to help a modeler 
through the process of deciding what model to build. Robinson (Chapter 4) 
presents a framework for modeling operations systems, such as manufactur-
ing and service systems. Meanwhile, van der Zee (Chapter 5) concentrates 
on conceptual modeling for manufacturing systems using an object-ori-
ented approach. The ABCmod conceptual modeling framework, devised by 
Arbez and Birta (Chapter 6), provides a detailed procedure that is useful 
for modeling discrete-event dynamic systems. In Chapter 7, Karagöz and 
Demirörs describe and compare a series of conceptual modeling frame-
works (FEDEP, CMMS (FDMS), DCMF, Robinson’s framework, and KAMA) 
most of which derive from simulation modeling in the military domain. In 
the final chapter of Part II, Haydon reflects upon his many years of experi-
ence in simulation modeling (Chapter 8). He describes how he approaches 
conceptual modeling from a practical perspective by outlining a series of 
steps that can be followed. This provides a valuable practice-based reflec-
tion on the topic.

Some authors have identified a correspondence between soft systems 
methodology (SSM) (Checkland 1981) and conceptual modeling. Pidd and 
Kotiadis discuss this connection in Part III. It is important to correctly iden-
tify the problem to be tackled, otherwise a simulation study is set for failure 
from the outset; Balci (1994) identifies this as a type 0 error. As a result, Pidd 
(Chapter 9) discusses problem structuring and how SSM can help a simula-
tion modeler ensure that the right problem is tackled. Kotiadis specifically 
focuses on using SSM to help identify the objectives of a simulation study 
and describes the approach through a case study on modeling community 
health care (Chapter 10).

Part IV investigates the links between software engineering and con-
ceptual modeling; this might be described as “conceptual engineering.” In 
Chapter 11, Liston et al. describe and illustrate the use of SysML as an aid 
to conceptual modeling. Following a review of process modeling methods, 
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Ryan and Heavey devise simulation activity diagrams to support concep-
tual modeling (Chapter 12). These aim to aid the communication between 
the modeler and system users and also to help the modeler gather the data 
needed for the creation of the model. In Chapter 13, Onggo compares a range 
of conceptual model representation methods and proposes a multifaceted 
approach. Tolk et al. look at the issue from the perspective of building large-
scale models (Chapter 14). In this case, the composability of the different 
model components becomes an important issue. By composability, they refer 
to the alignment of the model conceptualizations (or conceptual models). 
Tolk et al. go on to explore how composability might be achieved. The final 
chapter in Part IV discusses how conceptual models might be verified and 
validated. Tanrıöver and Bilgen discuss this in the context of UML-based 
conceptual models (Chapter 15).

In Part V, conceptual modeling is discussed with respect to two specific 
domains: military and semiconductor manufacturing. Pace (Chapter 16) dis-
cusses conceptual modeling in the military domain, with a specific focus 
on the discussions that have taken place at the Simulation Interoperability 
Workshops over the last decade or so. In Chapter 17, Sprenger and Rose dem-
onstrate how a semiconductor wafer factory simulation model can be simpli-
fied. Model simplification is identified as an important issue in conceptual 
modeling in Chapters 1 and 2. This chapter provides a useful illustration of 
the concept.

In the final part of the book, Chapter 18 provides a review of the previous 
chapters with a view to identifying the current state-of-the-art in concep-
tual modeling and directions for future research. It is hoped that this will 
provide an agenda for researchers working in the field of conceptual mod-
eling and that it will be a means for moving this underrepresented topic 
forward.

We would like to thank all those who have contributed to this book, par-
ticularly the authors and reviewers. We believe it provides an invaluable 
resource for those working in discrete-event simulation and particularly for 
those with an interest in conceptual modeling.

Roger J. Brooks
Kathy Kotiadis

Stewart Robinson 
Durk-Jouke van der Zee
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1
Conceptual Modeling for Simulation: 
Definition and Requirements

Stewart Robinson

1.1 Introduction

Conceptual modeling is the process of abstracting a model from a real or 
proposed system. It is almost certainly the most important aspect of a simu-
lation project. The design of the model impacts all aspects of the study, in 
particular the data requirements, the speed with which the model can be 
developed, the validity of the model, the speed of experimentation and the 
confidence that is placed in the model results. A well designed model signifi-
cantly enhances the possibility that a simulation study will be a success.

Although effective conceptual modeling is a vital aspect of a simulation 
study, it is probably the most difficult and least understood (Law 1991). There 
is surprisingly little written on the subject. It is difficult to find a book that 
devotes more than a handful of pages to the design of the conceptual model. 
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Neither are there a plethora of research papers, with only a handful of well 
regarded papers over the last four decades. A search through the academic 
tracks at major simulation conferences on discrete-event simulation reveals a 
host of papers on other aspects of simulation modeling. There are, however, 
only a few papers that give any space to the subject of conceptual modeling.

The main reason for this lack of attention is probably due to the fact that 
conceptual modeling is more of an ‘art’ than a ‘science’ and therefore it is 
difficult to define methods and procedures. Whatever the reason, the result 
is that the art of conceptual modeling is largely learnt by experience. This 
somewhat ad hoc approach does not seem satisfactory for such an important 
part of the simulation modeling process.

The purpose of this chapter is to bring more clarity to the area of conceptual 
modeling for simulation. The issue is addressed first by defining the meaning 
of conceptual modeling and then by establishing the requirements of a con-
ceptual model. The meaning of the term conceptual model is discussed in rela-
tion to existing definitions in the literature. A refined definition of a conceptual 
model is then given and the scope of conceptual modeling is defined. There 
is a pause for thought concerning the purpose of a conceptual model before a 
discussion on the requirements of a conceptual model. The chapter finishes 
with a brief review of the guidance that is available for conceptual modeling.

The domain of interest for this discussion is primarily in the use of dis-
crete-event simulation for modeling operations systems or operating systems. “An 
operating system is a configuration of resources combined for the provision of 
goods or services” (Wild 2002). Wild identifies four specific functions of opera-
tions systems: manufacture, transport, supply, and service. This is one of the 
prime domains for simulation in operational research. We might refer to it as 
“business-oriented” simulation while interpreting business in its widest sense 
to include, for instance, the public sector and health. Models in this domain 
tend to be of a relatively small scale, with a project life cycle of normally less 
than 6 months (Cochran et al. 1995). The models are generally developed by 
a lone modeler acting as an external or internal consultant. Sometimes the 
models are developed on a “do-it-yourself” basis with a subject matter expert 
carrying out the development. This is somewhat different to the nature of 
zsimulation modeling in the military domain, another major application of 
simulation in operational research, where models tend to be of a much larger 
scale and where they are developed by teams of people (Robinson 2002). 
Although the focus is on discrete-event simulation for modeling operations 
systems, this is not to say that the concepts do not have wider applicability.

Throughout the chapter, three roles in a simulation study are assumed:

The Clients•	 : the problem owners and recipients of the results
The Modeler•	 : the developer of the model
Domain Experts•	 : experts in the domain being modeled who provide 
data and information for the project
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These roles do not necessarily imply individual or separate people. There 
are often many clients and domain experts involved in a simulation study. 
In some situations one of the clients or subject matter experts may also act 
as the modeler.

Before exploring the meaning of conceptual modeling, let us begin with 
an example that highlights how more than one (conceptual) model can be 
developed of the same system.

1.2  Example: Modeling the Ford Motor Company’s 
South Wales Engine Assembly Plant

I had been called in to carry out some simulation modeling of the new 
engine assembly plant that Ford Motor Company (Ford) was planning to 
build in South Wales. Faced with a meeting room full of engineers I started, 
as normally I would, by asking what was the problem that they wished to 
address. There was a unanimous response: “Scheduling! We are not sure 
that there is enough space by the line to hold sufficient stocks of the key 
components. Obviously the schedules we run on the key component pro-
duction lines and on the main engine assembly line will affect the inventory 
we need to hold.” After further questioning it was clear that they saw this 
as the key issue. In their view, there was no problem with achieving the 
required throughput, especially because they had designed a number of 
similar lines previously.

The engine assembly line was planned to consist of three main  assembly 
lines (with well over a hundred operations), a Hot Test facility, and a Final 
Dress area. Figure 1.1 provides a schematic of the line. On the first line 
(Line A), engine blocks are loaded onto platens (metal pallets on which 
engines move around the conveyor system) and then pass through a series 
of  operations. On the Head Line various components are assembled to the 

Hot testFinal dress

Line A

Line B

Head line

Fig ur e 1.1
Schematic showing the layout of the South Wales Engine Assembly Plant.
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head before the complete subassembly is joined with the engine block on 
Line A. On leaving Line A, the engine is loaded to a Line B platen to continue 
the assembly process. The empty Line A platen is washed and returned so a 
new engine block can be loaded. At the end of Line B, completed engines are 
 off-loaded and move to the Hot Test facility. In Hot Test, engines are rigged to 
test machines, run for a few minutes and monitored. Engines that pass Hot 
Test move to the Final Dress area for completion. Engines that fail Hot Test 
are rectified and then completed.

The majority of the operations on the three main assembly lines consist of 
a single automatic machine. Some operations require two parallel machines 
due to the length of the machine cycle, while a few other operations are 
 performed manually. At various points along the line there are automatic 
test stations. When an engine fails the test, it is sent to an adjoining rework 
station, before returning to be tested again. All the operations are connected 
by a powered roller conveyor system.

The key components are the engine block, head, crankshaft, cam shaft, 
and connecting rods. These are produced at nearby production facilities, 
 delivered to the main assembly plant and stored line-side ready for assembly. 
Because various engine derivatives are made on the assembly line, a range 
of component derivatives need to be produced and stored for assembly. The 
result was the concern over scheduling the production and the storage of 
these key components.

As with all such projects, time for developing and using the model was 
limited. It was important, therefore, to devise a model that could answer 
the questions about scheduling key components as quickly as possible while 
maintaining a satisfactory level of accuracy.

In consideration the nature of the problem, it was clear that the key issue 
was not so much the rate at which engines progressed through the assembly 
line, but their sequence. The initial sequence of engines was determined by 
the production schedule, but this sequence was then disturbed by engines 
being taken out for rework and by the presence of parallel machines for some 
operations. Under normal operation the parallel machines would not cause 
a change in the sequence of engines on the line, but if one of the machines 
breaks down for a period, then the engines queuing for that machine would 
be delayed and their sequence altered.

It was recommended that the simulation model should represent in 
detail those elements that determined the sequence of engines on the main 
 assembly line, that is, the schedule, the test and rework areas, and the  parallel 
machines. All other operations could be simplified by grouping sections of 
the line that consisted of individual machines and representing them as a 
queue with a delay. The queue capacity needed to equate to the capacity of 
that section of the line. The delay needed to be equal to the time it took for 
an engine to pass through the section of the line, allowing for breakdowns. 
This would give a reasonable approximation to the rate at which engines 
would progress through the facility. Of course, the operations where the key 
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components are assembled to the engine need to be modeled in detail, along 
with the line-side storage areas for those components.

Further to this, it was noted that detailed models of the key component 
production lines already existed. Alternative production schedules for each 
line could be modeled separately from the engine assembly line model and 
the output from these models stored. The outputs could then be read into 
the engine assembly line model as an input trace stating the component 
derivatives and their time of arrival at the assembly line. Some suitable delay 
needed to be added to allow for the transportation time between the key 
component lines and the main assembly line. It was also unnecessary to 
model the Hot Test and Final Dress, as all of the key components have been 
assembled prior to reaching these areas.

As a result of these simplifications, the model could be developed much 
more quickly and the final model ran much faster, enabling a greater amount 
of experimentation in the time available. The model fulfilled its objectives, 
sizing the line side storage areas and showing that shortages of key compo-
nents were unlikely. What the model did suggest, however, was that there 
may be a problem with throughput.

Although the scheduling model indicated a potential problem with 
throughput, it did not contain enough detail to give accurate predictions 
of the throughput of the engine assembly line. As a result, a second model 
was developed with the objective of predicting and helping to improve the 
throughput of the facility. This model represented each operation in detail, 
but on this occasion did not represent the arrival and assembly of key com-
ponents. It was assumed that the key components would always be available, 
as had been suggested by the scheduling model.

The second (throughput) model indeed confirmed that the throughput 
was likely to fall significantly short of that required by Ford and identified 
a number of issues that needed to be addressed. Over a period of time, by 
making changes to the facility and performing further simulation experi-
ments, improvements were made such that the required throughput could 
be achieved.

This example demonstrates how two very different simulation models 
can be developed of the same system. But which model was the right one? 
The answer is both, since both answered the specific questions that were 
being asked of them. Underlying the differences between the models was 
the difference in the modeling objectives. Neither simulation model would 
have been useful for meeting the objectives of the other model. Of course, 
a single all encompassing model could have been developed, which could 
have answered both sets of questions. This, however, would have taken 
much longer to develop and it would certainly have run much slower, 
restricting the extent of the experimentation possible. Anyway, the need 
for the second model was only identified as a result of indications about 
throughput from the first model. Up to that point, a throughput model 
seemed unnecessary.
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A more fundamental question that should be asked is if very different 
models can be developed of the same system, how can a modeler determine 
which model to use? Indeed, how can a modeler develop a model design, or 
a set of model designs from which to select? The only clue that comes from 
the example above is the importance of the modeling objectives in determin-
ing the nature of the model. Beyond this, modelers need some means for 
determining what to model. This process of taking a real-world situation and 
from it designing a model is what we refer to as conceptual modeling.

1.3 What is Conceptual Modeling?

Conceptual modeling is about abstracting a model from a real or proposed 
system. All simulation models are simplifications of reality (Zeigler 1976). 
The issue in conceptual modeling is to abstract an appropriate simplification 
of reality (Pidd 2003). This provides some sense of what conceptual model-
ing is, but only in the most general of terms. How can the terms conceptual 
model and conceptual modeling be more precisely defined? Existing litera-
ture may shed some light on this topic.

In general, the notion of conceptual modeling, as expressed in the simula-
tion and modeling literature, is vague and ill-defined, with varying inter-
pretations as to its meaning. What seems to be agreed is that it refers to 
the early stages of a simulation study. This implies a sense of moving from 
the  recognition of a problem situation to be addressed with a simulation 
model to a determination of what is going to be modeled and how. Balci 
(1994) breaks the early parts of a simulation study down into a number of 
processes: problem formulation, feasibility assessment of simulation, system 
and objectives definition, model formulation, model representation, and pro-
gramming. Which of these is specifically included in conceptual modeling 
is not identified. What is clear from Balci and other authors, for instance 
Willemain (1995), is that these early stages of a modeling study are not just 
visited once, but that they are continually returned to through a series of 
iterations in the life cycle of a project. As such, conceptual modeling is not a 
one-off process, but one that is repeated and refined a number of times dur-
ing a simulation study.

Zeigler (1976) sheds some light on the subject by identifying five elements in 
modeling and simulation from the “real system” through to the “computer” 
(the computer-based simulation model). In between is the “experimental 
frame,” “base model,” and “lumped model.” The experimental frame is the 
limited set of circumstances under which the real system is observed, that is, 
specific input–output behaviors. The base model is a hypothetical complete 
explanation of the real system, which is capable of producing all possible 
input–output behaviors (experimental frames). The base model cannot be 
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fully known since full knowledge of the real system cannot be attained. For 
instance, almost all systems involve some level of human interaction that 
will affect its performance. This interaction cannot be fully understood since 
it will vary from person to person and time to time.

In the lumped model the components of a model are lumped together and 
simplified. The aim is to generate a model that is valid within the experi-
mental frame, that is, reproduces the input–output behaviors with sufficient 
fidelity. The structure of the lumped model is fully known. Returning to the 
example of human interaction with a system, in a lumped model specific 
rules for interaction are devised, e.g., a customer will not join a waiting line 
of more than 10 people.

Nance (1994) separates the ideas of conceptual model and communicative 
model. The conceptual model exists in the mind of a modeler, the commu-
nicative model is an explicit representation of the conceptual model. He also 
specifies that the conceptual model is separate from model execution. In 
other words, the conceptual model is not concerned with how the computer-
based model is coded. Fishwick (1995) takes a similar view, stating that a 
conceptual model is vague and ambiguous. It is then refined into a more 
concrete executable model. The process of model design is about developing 
and refining this vague and ambiguous model and creating the model code. 
In these terms, conceptual modeling is a subset of model design, which also 
includes the design of the model code.

The main debate about conceptual modeling and its definition has been 
held among military simulation modelers. Pace has lead the way in this 
debate and defines a conceptual model as “a simulation developer’s way of 
translating modeling requirements … into a detailed design framework …, 
from which the software that will make up the simulation can be built” (Pace 
1999). In short, the conceptual model defines what is to be represented and 
how it is to be represented in the simulation. Pace sees conceptual model-
ing as being quite narrow in scope viewing objectives and requirements 
definition as precursors to the process of conceptual modeling. The concep-
tual model is largely independent of software design and implementation 
 decisions. Pace (2000a) identifies the information provided by a conceptual 
model as consisting of assumptions, algorithms, characteristics, relation-
ships, and data.

Lacy et al. (2001) further this discussion, reporting on a meeting of the 
Defense Modelling and Simulation Office (DMSO) to try and reach a consen-
sus on the definition of a conceptual model. The paper describes a plethora 
of views, but concludes by identifying two types of conceptual model. A 
domain-oriented model that provides a detailed representation of the problem 
domain and a design-oriented model that describes in detail the requirements 
of the model. The latter is used to design the model code. Meanwhile, Haddix 
(2001) points out that there is some confusion over whether the conceptual 
model is an artifact of the user or the designer. This may, to some extent, be 
clarified by adopting the two definitions above.
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The approach of military simulation modelers can be quite different to that 
of those working in business-oriented simulation (Robinson 2002). Military 
simulations often entail large scale models developed by teams of software 
developers. There is much interest in model reuse and distributed simula-
tion, typified by the High Level Architecture (DMSO 2005). Business-oriented 
simulations tend to be smaller in scale, involve lone modelers normally using 
a visual interactive modeling system (Pidd 2004), and the models are often 
thrown away on completion of a project. Interest in distributed simulation 
is moderate, mostly because the scale and lifetime of the models does not 
warrant it (Robinson 2005). As a result, although the definition and require-
ments for conceptual modeling may be similar in both these domains, some 
account must be made of the differences that exist.

In summary, the discussion above identifies some key facets of conceptual 
modeling and the definition of a conceptual model:

Conceptual modeling is about moving from a problem situation, •	
through model requirements to a definition of what is going to be 
modeled and how.
Conceptual modeling is iterative and repetitive, with the model •	
being continually revised throughout a modeling study.
The conceptual model is a simplified representation of the real •	
system.
The conceptual model is independent of the model code or software •	
(while model design includes both the conceptual model and the 
design of the code [Fishwick 1995]).
The perspective of the client and the modeler are both important in •	
conceptual modeling.

It is clear, however, that complete agreement does not exist over these facets.

1.3.1 A Definition of a Conceptual Model

Following the discussion above, Figure 1.2 defines a conceptual model 
as shown by the area within the dashed ellipse. It also places it within the 
wider context of a simulation study as defined in Robinson (2004). Figure 1.2 
shows four key processes in the development and use of a simulation model: 
 conceptual modeling, model coding, experimentation, and implementation. 
The outcome of each process is, respectively, a conceptual model, a computer 
model, solutions to the problem situation and/or a better understanding of 
the real world, and improvements to the real world. The double arrows illus-
trate the iterative nature of the process and the circular diagram illustrates the 
potential to repeat the process of improvement through simulation a number 
of times. Missing from this diagram are the verification and validation activi-
ties involved in a simulation study. These are carried out in parallel with each 
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of the four processes outlined in Figure 1.2. For a more detailed description of 
this life cycle and model verification and validation see Robinson (2004).

Based upon an understanding of the problem situation the conceptual 
model is derived. This model is only a partial description of the real world, 
but it is sufficient to address the problem situation. The double arrow between 
the problem situation and objectives signifies the interplay between prob-
lem understanding and modeling. While the conceptual model reflects the 
understanding of the problem situation, the process of developing the con-
ceptual model also changes the understanding of the problem situation. In 
particular, the nature of the questions that the modeler asks during concep-
tual modeling can lead to new insights on behalf of the clients and domain 
experts. At a greater extreme, ideas derived purely from conceptual model-
ing may be implemented in the real system, changing the actual nature of 
the problem situation.

The conceptual model itself consists of four main components: objectives, 
inputs (experimental factors), outputs (responses), and model content. Two 
types of objective inform a modeling project. First, there are the modeling 
objectives, which describe the purpose of the model and modeling project. 
Second, there are general project objectives, which include the timescales 
for the project and the nature of the model and its use (e.g., requirements 
for the flexibility of the model, run-speed, visual display, ease-of-use, and 
model/component reuse). The definition of objectives is seen as intrinsic to 

Real world
(problem situation)

Conceptual model

Determine

Determine achievement of,

or reasons for failure

Modeling and
general project

objectives
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Experimental
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Fig ur e 1.2
The conceptual model in the simulation project life cycle. (Adapted from Robinson, S., 
Simulation: The Practice of Model Development and Use, Wiley, Chichester, UK, 2004. With 
permission.)
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decisions about the conceptual model. The Ford example above highlighted 
how different modeling objectives led to different models. Similarly, the gen-
eral project objectives can affect the nature of the model. A shorter timescale, 
for instance, may require a simpler conceptual model than would have been 
devised had more time been available. For this reason, the objectives are 
included in the definition of the conceptual model.

Including the modeling objectives as part of the definition of a conceptual 
model is at odds with Pace (1999). He sees the objectives and requirements 
definition as separate from the conceptual model. The author’s view is that 
while understanding the problem situation and the aims of the organization 
lies within the domain of the real world (problem situation), the modeling 
objectives are specific to a particular model and modeling exercise. Different 
modeling objectives lead to different models within the same  problem 
 situation, as in the Ford example. As a result, the modeling objectives are 
intrinsic to the description of a conceptual model. Without the modeling 
objectives, the description of a conceptual model is incomplete.

The inputs (or experimental factors) are those elements of the model that 
can be altered to effect an improvement in, or better understanding of, the 
problem situation. They are determined by the objectives. Meanwhile, the 
outputs (or responses) report the results from a run of the simulation model. 
These have two purposes: first, to determine whether the modeling objec-
tives have been achieved; second, to point to reasons why the objectives are 
not being achieved, if they are not.

Finally, the model content consists of the components that are represented 
in the model and their interconnections. The content can be split into two 
dimensions (Robinson 1994):

The scope of the model:•	  the model boundary or the breadth of the real 
system that is to be included in the model.
The level of detail:•	  the detail to be included for each component in the 
model’s scope.

The model content is determined, in part, by the inputs and outputs, in that 
the model must be able to accept and interpret the inputs and to provide the 
required outputs. The model content is also determined by the level of accuracy 
required. More accuracy generally requires a greater scope and level of detail.

While making decisions about the content of the model, various assump-
tions and simplifications are normally introduced. These are defined as 
follows:

Assumptions•	  are made either when there are uncertainties or beliefs 
about the real world being modeled.
Simplifications•	  are incorporated in the model to enable more rapid 
model development and use, to reduce data requirements, and to 
improve transparency (understanding) (Section 1.5.1).
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Assumptions and simplifications are identified as separate facets. 
Assumptions are ways of incorporating uncertainties and beliefs about the 
real world into the model; they relate to the problem domain (i.e., the real 
world). Simplifications are ways of reducing the complexity of the model; 
they relate to the model domain. As such, assumptions are a facet of limited 
knowledge or presumptions, while simplifications are a facet of the desire to 
create simple models.

Based on these ideas a conceptual model is defined as follows:

The conceptual model is a non-software-specific description of the com-
puter simulation model (that will be, is or has been developed), describing 
the objectives, inputs, outputs, content, assumptions, and simplifications 
of the model.

This definition adds the point that the conceptual model is non- software-
specific in line with the views of the other authors described above. 
Considerations as to how the model code will be developed (whether it be 
a spreadsheet, specialist software, or a programming language) should not 
dominate debate around the nature of the model that is required to address 
the problem situation. Conceptual modeling is about determining the right 
model, not how the software will be implemented.

In saying this, it must be recognized that many simulation modelers only 
have access to one or possibly two simulation tools. As a result, considerations 
of software implementation will naturally enter the debate about the nature 
of the conceptual model. This is recognized by the double arrow, signifying 
iteration, for the model coding process in Figure 1.2. What this definition 
for a conceptual model aims to highlight is the importance of separating as 
far as possible detailed model code considerations from decisions about the 
conceptual design.

The definition does not place the conceptual model at a specific point in time 
during a simulation study. This reflects the level of iteration that may exist in 
simulation work. A conceptual model may reflect a model that is to be devel-
oped, is being developed or has been developed in some software. The model 
is continually changing as the simulation study progresses. Whatever stage has 
been reached in a simulation study, the conceptual model is a non-software-
specific description of the model as it is understood at that point in time.

It should also be noted that this definition does not imply that a formal and 
explicit conceptual model is developed. Indeed, the conceptual model may 
not be formally expressed (not fully documented) and/or it may be implicit 
(in the mind of the modeler). Whether the conceptual model is explicit or not, 
it still exists, in that the modeler has made decisions about what to model 
and what not to model. For the rest of this chapter we shall assume that the 
conceptual model is made explicit, in a more or less formal fashion, with a 
view to reaching a joint agreement between the modeler, clients, and domain 
experts concerning its content.
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1.3.2 Conceptual Modeling Defined

Put simply, conceptual modeling is the process of creating the conceptual 
model. Based on the definition given above this requires the following 
activities:

Understanding the problem situation (a precursor to conceptual •	
modeling)
Determining the modeling and general project objectives•	
Identifying the model outputs (responses)•	
Identify the model inputs (experimental factors)•	
Determining the model content (scope and level of detail),  identifying •	
any assumptions and simplifications

These activities are explored in more detail in chapter 4. This list suggests a 
general order in which the elements of a conceptual model might be deter-
mined. There is likely to be a lot of iteration forwards and backwards between 
these activities. Further to this, there is iteration between conceptual mod-
eling and the rest of the process of model development and use (Robinson 
2004). Although the conceptual model should be independent of the model-
ing software, it must be recognized that there is an interplay between the 
two. Since many modelers use the software that they are familiar with, it is 
possible (although not necessarily desirable) that methods of representation 
and limitations in the software will cause a revision to the conceptual model. 
Continued learning during model coding and experimentation may cause 
adjustments to the conceptual model as the understanding of the problem 
situation and modeling objectives change. Model validation activities may 
result in alterations to the conceptual model in order to improve the accuracy 
of the model. Availability, or otherwise, of data may require adjustments to 
the conceptual model. All this implies a great deal of iteration in the pro-
cess of modeling and the requirement to continually revise the conceptual 
model. This iteration is illustrated by the double arrows between the stages 
in Figure 1.2.

1.4 The Purpose of a Conceptual Model

In reflecting on the purpose of a conceptual model, one might question 
whether it is necessary to have one at all. Indeed, some might argue that 
the power of modern simulation software negates the need for conceptual 
 modeling. Such software enables a modeler to move straight from developing 
an understanding of the problem situation to creating a computer model.
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Albeit that this argument appears to have some credence, it ignores the 
fact that whatever practice a modeler might employ for developing the model 
code, decisions still have to be taken concerning the content and assump-
tions of the model. Modern simulation software does not reduce this level of 
decision-making. What the software can provide is an environment for the 
more rapid development of the model code, enhancing the opportunities for 
iteration between conceptual modeling and model coding, and facilitating 
rapid prototyping. This does not negate the need for conceptual modeling, 
but simply aids the process of model design. It also highlights the point that 
conceptual modeling is not a one-off step, but part of a highly iterative pro-
cess, particularly in relation to model coding.

Indeed, the power of modern software (and hardware) and the wider use 
of distributed processing may actually have increased the need for effec-
tive conceptual modeling. Salt (1993) and Chwif et al. (2000) both identify 
the problem of the increasing complexity of simulation models; a result 
of the “possibility” factor. People build more complex models because the 
 hardware and software enable them to. While this may have extended the 
utility of simulation to problems that previously could not have been tack-
led, it also breads a tendency to develop overly complex models. There are 
various problems associated with such models including extended develop-
ment times and onerous data requirements. This trend to develop ever more 
complex models has been particularly prevalent in the military domain 
(Lucas and McGunnigle 2003). Indeed, it could be argued that there are 
some advantages in only having limited computing capacity; it forces the 
modeler to carefully design the model! As a result of the possibility factor it 
would seem that careful design of the conceptual model is more important 
than ever.

Beyond the general sense that careful model design is important, there 
are a number of reasons why a conceptual model is important to the devel-
opment and use of simulation models. Pace (2003) puts this succinctly by 
stating that the conceptual model provides a roadmap from the problem 
situation and objectives to model design and software implementation. He 
also recognizes that the conceptual model forms an important part of the 
documentation for a model. More specifically, a well-documented concep-
tual model does the following:

Minimizes the likelihood of incomplete, unclear, inconsistent, and •	
wrong requirements (Borah 2002, Pace 2002)
Helps build the credibility of the model•	
Guides the development of the computer model•	
Forms the basis for model verification and guides model validation•	
Guides experimentation by expressing the objectives, experimental •	
factors, and responses
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Provides the basis of the model documentation•	
Can act as an aid to independent verification and validation when it •	
is required
Helps determine the appropriateness of the model or its parts for •	
model reuse and distributed simulation (Pace 2000b)

Overall the conceptual model, if made explicit and clearly expressed, pro-
vides a means of communication between all parties in a simulation study: 
the modeler, clients, and domain experts (Pace 2002). In so doing it helps to 
build a consensus, or least an accommodation, about the nature of the model 
and its use.

1.5 Requirements of a Conceptual Model

In designing a conceptual model it would be useful to have a set of require-
ments in mind. These could provide a basis against which to determine 
whether a conceptual model is appropriate. Indeed, Pritsker (1987) says that 
“modelling is a difficult process because we do not have measurable criteria 
for evaluating the worth of a model.” In conceptual modeling it may be diffi-
cult to identify a complete set of measurable criteria, since the model is purely 
descriptive at this stage. That said, a sense of requirements, even if they are 
more qualitative, would be helpful.

So what are the requirements for an effective conceptual model? This ques-
tion is first answered by describing four main requirements after which the 
overarching need to keep the model as simple as possible is discussed.

Assessment criteria for models have been discussed by a number of 
authors, for instance, Gass and Joel (1981), Ören (1981, 1984), Robinson and 
Pidd (1998), and Balci (2001). The majority of this work is in the domain of 
large scale military and public policy models; Robinson and Pidd are an 
exception. Furthermore, the criteria focus on assessing models that have 
been developed rather than on the assessment of conceptual models.

In terms of criteria for conceptual models in operational research there 
has been little reported. Willemain (1994), who investigates the  preliminary 
stages of operational research interventions, briefly lists five qualities of 
an effective model: validity, usability, value to the clients, feasibility, and 
 aptness for the clients’ problem. Meanwhile, Brooks and Tobias (1996a) iden-
tify 11 performance criteria for a good model. Requirements are also briefly 
discussed by Pritsker (1986), Henriksen (1988), Nance (1994), and van der Zee 
and Van der Vorst (2005). Outside of operational research there are some 
discussions, for instance, Teeuw and van den Berg (1997) who discuss the 
quality of conceptual models for business process reengineering.
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Based on the discussions by simulation modelers and operational research-
ers, here it is proposed that there are four main requirements of a conceptual 
model: validity, credibility, utility, and feasibility. Table 1.1 shows how the 
requirements discussed in the literature relate to these.

It is generally agreed that a valid model is one that is sufficiently accurate 
for the purpose at hand (Carson 1986). However, since the notion of accu-
racy is of little meaning for a model that has no numeric output, conceptual 
model validity might be defined as:

A perception, on behalf of the modeler, that the conceptual model can 
be developed into a computer model that is sufficiently accurate for the 
purpose at hand.

The phrase “can be developed into a computer model” is included in recogni-
tion that the conceptual model is a description of a model, not the computer 
model itself. Depending on the status of the simulation project, the concep-
tual model may be describing a computer model that will be developed, is 
being developed, or has been developed.

Underlying the notion of validity is the question of whether the model is 
“right.” Note that this definition places conceptual model validity as a per-
ception of the modeler. It also maintains the notion that a model is built for a 
specific purpose, which is common to most definitions of validity.

Credibility is similar to validity, but is taken from the perspective of the 
clients rather than the modeler. The credibility of the conceptual model is 
therefore defined as:

A perception, on behalf of the clients, that the conceptual model can be 
developed into a computer model that is sufficiently accurate for the pur-
pose at hand.

The clients must believe that the model is sufficiently accurate. Included in 
this concept is the need for the clients to be convinced that all the important 
components and relationships are in the model. Credibility also requires that 
the model and its results are understood by the clients. Would a model that 
could not be understood have credibility? An important factor in this respect 
is the transparency of the model, which is discussed below.

Validity and credibility are seen as separate requirements because the 
modeler and clients may have very different perceptions of the same model. 
Although a modeler may be satisfied with a conceptual model, the clients 
may not be. It is not unusual for additional scope and detail to be added 
to a model, not because it improves its validity, but because it improves its 
 credibility. Not that adding scope and detail to gain credibility is necessarily 
a bad thing, but the modeler must ensure that this does not progress so far 
that the model becomes over complex. Simulation is particularly prone to 
such a drift through, for instance, the addition of nonvital graphics and the 
logic required to drive them.
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The third concept, utility, is defined as:

A perception, on behalf of the modeler and the clients, that the concep-
tual model can be developed into a computer model that is useful as an 
aid to decision-making within the specified context.

Utility is seen as a joint agreement between the modeler and the cli-
ents about the usefulness of the model. This notion moves beyond the 
question of whether the model is sufficiently accurate, to the question of 
whether the model is useful for the context of the simulation study. Utility 
includes issues such as ease-of-use, flexibility (i.e., ease with which model 
changes can be made), run-speed and visual display. Where the model, or 
a component of the model, might be used again on the same or another 
study, reusability would also be subsumed within the concept of utility. 
The requirements for utility are expressed through the general project 
objectives.

Within any context a range of conceptual models could be derived. The 
accuracy of these models would vary, but some or all might be seen as suffi-
ciently accurate and, hence, under the definitions given above, they would be 
described as valid and credible. This does not necessarily mean that the mod-
els are useful. For instance, if a proposed model is large and  cumbersome, it 
may have limited utility due to reduced ease-of-use and flexibility. Indeed, 
a less accurate (but still sufficiently accurate), more flexible model that runs 
faster may have greater utility by enabling a wider range of experimentation 
within a timeframe.

Hodges (1991) provides an interesting discussion around model utility 
and suggests that a “bad” model (one that is not sufficiently accurate) can 
still be useful. He goes on to identify specific uses for such models. Bankes 
(1993) continues with this theme, discussing the idea of inaccurate models for 
exploratory use, while Robinson (2001) sees a role for such models in facilitat-
ing learning about a problem situation.

The final requirement, feasibility, is defined as follows:

A perception, on behalf of the modeler and the clients, that the con-
ceptual model can be developed into a computer model with the time, 
resource and data available.

A range of factors could make a model infeasible: it might not be possible to 
build the proposed model in the time available, the data requirements may 
be too onerous, there may be insufficient knowledge of the real system, and 
the modeler may have insufficient skill to code the model. Feasibility implies 
that the time, resource, and data are available to enable development of the 
computer model.

The four requirements described above are not mutually exclusive. For 
instance, the modeler’s and clients’ perspectives on model accuracy are 
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likely to be closely aligned, although not always. An infeasible model could 
not generally be described as a useful model, although a conceptual model 
that is infeasible could be useful for aiding problem understanding. Albeit 
that these concepts are related, it is still useful to identify them as four sepa-
rate requirements so a modeler can be cognizant of them when designing the 
conceptual model.

1.5.1 The Overarching r equirement: Keep the Model Simple

The overarching requirement is the need to avoid the development of 
an overly complex model. In general the aim should be this: to keep the 
model as simple as possible to meet the objectives of the simulation study 
(Robinson 2004).

There are a number of advantages with simple models (Innis and Rexstad 
1983, Ward 1989, Salt 1993, Chwif et al. 2000, Lucas and McGunnigle 2003, 
Thomas and Charpentier 2005):

Simple models can be developed faster.•	
Simple models are more flexible.•	
Simple models require less data.•	
Simple models run faster.•	
The results are easier to interpret since the structure of the model is •	
better understood.

With more complex models these advantages are generally lost. Indeed, at 
the center of good modeling practice is the idea of resorting to the simplest 
explanation possible. Occam’s razor puts this succinctly, “plurality should not 
be posited without necessity” (William of Occam; quoted from Pidd 2003), 
as does Antoine de Saint-Exupery, who reputedly said that  “perfection is 
achieved, not when there is nothing more to add, but when there is  nothing 
left to take away.”

The requirement for simple models does not negate the need to build 
complex models on some occasions. Indeed, complex models are sometimes 
required to achieve the modeling objectives. The requirement is to build the 
simplest model possible, not simple models per se. What should be avoided, 
however, is the tendency to try and model every aspect of a system when a 
far simpler more focused model would suffice.

The graph in Figure 1.3 illustrates the notional relationship between 
model accuracy and complexity (Robinson 1994). Increasing levels of 
 complexity (scope and level of detail) improve the accuracy of the model, 
but with diminishing returns. Beyond point x there is little to be gained by 
adding to the complexity of the model. A 100% accurate model will never 
be achieved because it is impossible to know everything about the real sys-
tem. The graph illustrates a further point. Increasing the complexity of the 
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model too far, may lead to a less accurate model. This is because the data 
and  information are not available to support such a detailed model. For 
instance, it is unlikely that we could accurately model the exact behavior 
of individuals in a queue, and attempts to do so, beyond very simple rules, 
may lead to a less accurate result.

Ward (1989) provides a lucid account on the simplicity of models. In doing 
so, he makes a useful distinction between constructive simplicity and trans-
parency. Transparency is an attribute of the client (how well he/she under-
stands the model), while constructive simplicity is an attribute of the model 
itself (the simplicity of the model). Because transparency is an attribute of 
the client, it depends on his/her level of knowledge and skill. A model that 
is transparent to one client may not be transparent to another. In develop-
ing a conceptual model, the modeler must consider transparency as well as 
simplicity, designing the model with the particular needs of the client in 
mind. The need for transparency is, of course, confounded by the presence 
of multiple clients (as is the case in many simulation studies), all of whom 
must be satisfied with the model. These ideas closely link to the requirement 
for credibility, as discussed above, since a model that is not transparent is 
unlikely to have credibility.

Having emphasized the importance of simplicity, there are those that 
warn against taking this to an extreme. Pritsker (1986) reflects on his experi-
ence of developing models of differing complexity of the same system. He 
concludes that the simplest model is not always best because models need 
to be able to evolve as the requirements change. The simplest model is not 
always the easiest to embellish. Schruben and Yücesan (1993) make a similar 
point, stating that simpler models are not always as easy to understand, code 
and debug. Davies et al. (2003) point out that simpler models require more 
extensive assumptions about how a system works and that there is a danger 
in setting the system boundary (scope) too narrow in case an important facet 
is missed.
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Fig ur e 1.3
Simulation model complexity and accuracy. (Adapted from Robinson, S., Industrial Engineering, 
26 (9), 34–36, 1994. With permission.)
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1.6 Guidance on Conceptual Modeling

Exhortations to develop simple models highlight an important consideration 
in designing a conceptual model. Modeling requirements provide a guide as 
to whether a conceptual model is appropriate. Neither, however, describes 
how a modeler might go about determining what the conceptual model 
should be in a simulation study. So what help is offered in the simulation and 
modeling literature to guide modelers in designing the conceptual model?

First, it is worth recognizing that conceptual modeling requires creativ-
ity (Henriksen 1989). Simulation modeling is both art and science (Shannon 
1975) with conceptual modeling lying more at the artistic end! As Schmeiser 
(2001) points out: “While abstracting a model from the real world is very 
much an art, with many ways to err as well as to be correct, analysis of the 
model is more of a science, and therefore easier, both to teach and to do.” 
The need for creativity does not, however, excuse the need for guidelines on 
how to model (Evans 1992). Ferguson et al. (1997), writing about software 
development, point out that in “most professions, competent work requires 
the disciplined use of established practices. It is not a matter of creativity 
versus discipline, but one of bringing discipline to the work so creativity 
can happen.”

In searching the modeling literature for advice from simulation model-
ers and operational researchers on how to develop models, three basic 
approaches can be found: principles of modeling, methods of simplification, 
and modeling frameworks.

1.6.1 Principles of Modeling

Providing a set of guiding principles for modeling is one approach to advis-
ing simulation modelers on how to develop (conceptual) models. For instance, 
Pidd (1999) describes six principles of modeling:

Model simple; think complicated•	
Be parsimonious; start small and add•	
Divide and conquer; avoid megamodels•	
Use metaphors, analogies, and similarities•	
Do not fall in love with data•	
Modeling may feel like muddling through•	

The central theme is one of aiming for simple models through evolutionary 
development. Others have produced similar sets of principles (or guidelines), 
for instance, Morris (1967), Musselman (1992), Powell (1995), Pritsker (1998), 
and Law (2007). The specific idea of evolutionary model development is fur-
ther explored by Nydick et al. (2002).
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These principles provide some useful guidance for those developing 
 conceptual models. It is useful to encourage modelers to start with small 
models and to gradually add scope and detail. What such principles do not 
do, however, is to guide a modeler through the conceptual modeling process. 
When should more detail be added? When should elaboration stop? There is 
a difference between giving some general principles and guiding someone 
through a process.

1.6.2 Methods of Simplification

Simplification entails removing scope and detail from a model or repre-
senting components more simply while maintaining a sufficient level 
of accuracy. In Zeigler’s (1976) terms this could be described as further 
 lumping of the lumped model. This is the opposite of the start small and 
add principle.

There are quite a number of discussions on simplification, both in 
the simulation and the wider modeling context. Morris (1967) identifies 
some methods for simplifying models: making variables into constants, 
eliminating variables, using linear relations, strengthening the assump-
tions and restrictions, and reducing randomness. Ward (1989) provides 
a similar list of ideas for simplification. Meanwhile, Courtois (1985) iden-
tifies criteria for the successful decomposition of models in engineering 
and science.

For simulation modeling, Zeigler (1976) suggests four methods of simpli-
fication: dropping unimportant components of the model, using random 
variables to depict parts of the model, coarsening the range of variables 
in the model, and grouping components of the model. There is an appar-
ent contradiction between Morris’s and Zeigler’s advice in that the former 
suggests reducing randomness, while the latter suggests increasing it by 
representing sections of the model with random variables. This difference 
in opinion can be reconciled by recognizing that simplification methods 
are sensitive to the modeling approach that is being applied. Morris is 
concentrating more on mathematical algorithms where the inclusion of 
randomness is less  convenient. Zeigler is writing about simulation spe-
cifically, where complex behaviors can sometimes be reduced to a single 
random variable.

Yin and Zhou (1989) build upon Zeigler’s ideas, discussing six simplifica-
tion techniques and presenting a case study. Sevinc (1990) provides a semi-
automatic procedure based on Zeigler’s ideas. Innis and Rexstad (1983) enter 
into a detailed discussion about how an existing model might be simplified. 
They provide a list of 17 such methods, although they do not claim that these 
are exhaustive. They conclude by suggesting that managers should be pro-
vided with both a full and a simplified simulation model. There is a sense 
in which the Ford example followed this approach, with one model being 
more detailed than the other, although neither could be described as a “full” 
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model. Robinson (1994) also lists some methods for simplifying simulation 
models. Finally, Webster et al. (1984) describe how they selected an appropri-
ate level of detail for generating samples in a timber harvesting simulation 
model.

Such ideas are useful for simplifying an existing (conceptual) model, 
but they do not guide the modeler over how to bring a model into exis-
tence. Model simplification acts primarily as a redesign tool and not a 
design tool.

1.6.3 Modeling Frameworks

A modeling framework goes beyond the idea of guiding principles and meth-
ods of model simplification by providing a specific set of steps that guide a 
modeler through development of a conceptual model. There have been some 
attempts to provide such frameworks going back to Shannon (1975) who 
describes four steps: specification of the model’s purpose; specification of the 
model’s components; specification of the parameters and variables associ-
ated with the components; and specification of the relationships between the 
components, parameters, and variables.

Both Nance and Pace have devised frameworks that relate primarily 
to the development of large scale models in the military domain. Nance 
(1994) outlines the conical methodology. This is an object-oriented, hier-
archical specification language that develops the model definition (scope) 
top-down and the model specification (level of detail) bottom-up. A series 
of modeling steps are outlined. Balci and Nance (1985) focus specifically 
on a procedure for problem formulation. Meanwhile, Arthur and Nance 
(2007) identify the potential to adopt software requirements engineer-
ing (SRE) approaches for simulation model development. They also note 
that there is little evidence of SRE actually being adopted by simulation 
modelers.

Pace (1999, 2000a) explores a four-stage approach to conceptual model 
development, similar to that of Shannon: collect authoritative informa-
tion on the problem domain; identify entities and processes that need to 
be represented; identify simulation elements; and identify relationships 
between the simulation elements. He also identifies six criteria for deter-
mining which elements to include in the conceptual model. These crite-
ria focus on the correspondence between real-world items and simulation 
objects (Pace 2000a).

Within our domain of interest, simulation for modeling operations 
 systems, there is quite limited work on conceptual modeling frameworks. 
Brooks and Tobias (1996b) briefly propose a framework for conceptual 
 modeling, but go no further in expanding upon the idea. Recent papers by 
Guru and Savory (2004) and van der Zee and Van der Vorst (2005) propose 
conceptual modeling frameworks in some more detail. Guru and Savory 
 propose a set of modeling templates (tables) useful for modeling physical 
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security systems. Meanwhile, van der Zee and Van der Vorst propose a 
framework for supply chain simulation. Both are aimed at an object- oriented 
implementation of the computer-based simulation model. Meanwhile, 
Kotiadis (2007) looks to the ideas of Soft Operational Research, and spe-
cifically soft systems  methodology (SSM) (Checkland 1981), for aiding the 
conceptual modeling process. She uses SSM to help understand a complex 
health care system and then derives the simulation conceptual model from 
the SSM “purposeful activity model.”

In this book, Robinson proposes a conceptual modeling framework that 
guides a modeler from identification of the modeling objectives through 
to determining the scope and level of detail of a model (chapter 4). Arbez 
and Birta describe the ABCmod conceptual modeling framework that 
provides a procedure for identifying the components and relationships 
for a  discrete-event simulation model (chapter 6). Meanwhile, van der 
Zee describes a domain-specific framework for developing conceptual 
models of manufacturing systems (chapter 5). Karagöz and Demirörs 
describe and compare a number of frameworks that have largely been 
developed for the military domain (chapter 7), and Haydon explains how 
he approaches  conceptual modeling from a practice-based perspective 
(chapter 8).

Such frameworks appear to have potential for aiding the development of 
conceptual models, but they are not yet fully developed and tested, nor are 
they in common use. An interesting issue is whether frameworks should be 
aimed at a specific domain (e.g., supply chain), or whether it is feasible to 
devise more generic frameworks.

1.7 Conclusion

There is, in large measure, a vacuum of research in the area of concep-
tual modeling for discrete-event simulation. Albeit that many simulation 
researchers consider effective conceptual modeling to be vital to the success 
of a simulation study, there have been few attempts to develop definitions 
and approaches that are helpful to the development of conceptual models. 
The discussion above attempts to redress this balance by offering a defini-
tion of a conceptual model and outlining the requirements for a conceptual 
model. The conceptual model definition is useful for providing a sense of 
direction to simulation modelers during a simulation study. If they do not 
know what they are heading for, how can they head for it? The require-
ments provide a means for determining the appropriateness of a conceptual 
model both during and after development. For researchers, the definition 
and requirements provide a common foundation for further research in 
conceptual modeling.
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2
Complexity, Level of Detail, 
and Model Performance

Roger J. Brooks

2.1 Introduction

Mathematical and simulation models are used extensively in many areas of 
science and industry from population genetics to climate modeling and from 
simulating a factory production line to theories of cosmology. Modeling may 
be undertaken for a number of reasons but the most common aim is to pre-
dict the behavior of a system under future circumstances. A model may be 
purely predictive or it may be part of a decision making process by predict-
ing the system behavior under alternative decision scenarios. There are other 
occasions when a model is just descriptive, simply summarizing the model-
er’s understanding of the system (Jeffers 1991). The understanding of the sys-
tem gained by the modeler and the user can also be an important benefit of 
the project (Fripp 1985), particularly in scientific research when it can be the 
principal objective. Equally, a modeling project may have other objectives 
such as helping to design experiments or identifying research requirements. 
Despite the great variation in the types of model and their usage, the mode-
ling process itself will take a similar form for most projects and can typically 
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be split into the steps of problem formulation, conceptual modeling, collec-
tion and analysis of data, model construction, verification and validation, 
experimentation, analysis of results, conclusions, and implementation. The 
modeling steps do not form a linear process but one that may involve many 
loops, and so the choice of model affects each of the steps. 

The outcome of the conceptual modeling step is a conceptual model, and 
this chapter follows the definition of Brooks and Robinson (2001) that a con-
ceptual model is “a software independent description of the model that is 
to be constructed.” The conceptual model specifies how the system (virtual 
world) being simulated should work—the entities that it contains and all the 
interactions, rules, and equations that determine their behavior. The specifi-
cation includes the type of model (e.g., whether the model state changes con-
tinuously or discretely), and the scope or boundary of the model. Therefore, 
conceptual modeling consists of choosing the model to use in the project. 
The actual building of the model is the model construction step.

The step of problem formulation consists of understanding the problem 
and setting the scope and objectives for the project. There is no agreed defi-
nition of conceptual modeling within simulation and operational research 
(OR) and, for example, setting the project objectives is sometimes included 
as part of conceptual modeling (Robinson 2008).

This chapter examines how the choice of model and the comparison of alter-
native models has been discussed and investigated in the literature. It includes 
both mathematical and simulation models from a range of applications in dif-
ferent areas of science, on the basis that in each case the underlying modeling 
problem is similar—deciding what to include in the model to produce the best 
outcome for the project. The characteristics most often used when comparing 
different models are complexity and level of detail, but without these terms 
being defined clearly. Three more specific characteristics, namely size, con-
nectedness, and calculational complexity are proposed for comparing mod-
els. A better understanding of the relationship between model characteristics 
and the outcome of the modeling project would help the conceptual modeling 
process since choosing the model implicitly involves predicting the impact 
of the model on the project. Eleven model performance elements are set out 
that cover different aspects of how the model affects the project outcome. An 
experiment to investigate the effect of size, connectedness, and calculational 
complexity on some of the performance elements is described.

2.2 Choice of the Best Model

The aim of the conceptual modeling step is to select the conceptual model 
that will lead to the best overall project outcome. The choice of models is usu-
ally very broad because a great deal is known about the system relationships 
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on many different spatial and time scales (Courtois 1985). Finding the best 
model is often viewed to a large extent as the problem of choosing the appro-
priate level of detail and this is considered one of the most difficult aspects 
of the modeling process (Law 1991) and one that has a major effect on the 
successfulness of the project (Tilanus 1985, Ward 1989, Salt 1993).

By viewing the selection of the conceptual model in this way, the alter-
native models are effectively being ordered by the characteristic of level of 
detail, which is the most common characteristic used to compare models. 
This is done in the hope that there will be similarities with previous stud-
ies in the effect of the level of detail on model performance, so that experi-
ence from these studies can be applied in the selection of the current model. 
For example, a model that is too simple will be unrealistic and so its results 
will be, at best, of little use and, at worst, misleading. On the other hand, 
considerable resources are usually required to build a complex model and 
so, if the model is too complex, constraints on resources may prevent the 
completion of the project (here, it is assumed that a more detailed model will 
be more complex, although the meaning of level of detail and complexity 
are discussed further in Section 2.4). It is generally harder to understand the 
relationships contained in a complex model and this makes the interpreta-
tion of the results more difficult, possibly leading to incorrect conclusions 
being drawn. A complex model is probably more likely to contain errors as it 
is harder to verify that the model is working as intended. 

The advice given on selecting the level of detail seems to consist almost 
entirely of vague principles and general guidelines. A commonly quoted 
maxim is Ockham’s (or Occam’s) razor, attributed to the fourteenth-century 
philosopher William of Ockham, and translated (from the Latin) as “enti-
ties should not be multiplied without necessity,” or “it is vain to do by more 
what can be done by fewer.” In other words, choose the simplest model 
that meets the modeling objectives. Often, the advice given is to start from 
a simple model and progressively add detail until sufficient accuracy is 
obtained. It is important to match the level of detail of the model with the 
modeling  objectives and with the available data (Law et al. 1993, Jakeman 
and Hornberger 1993, Hunt 1994). However, knowledge of these principles is 
of only limited use to the modeler and the choice of the best model seems to 
be regarded as more of an art than a science.

2.3 Model Performance

The evaluation of the performance of a model should cover the impact 
of the model on all aspects of the project. Such an assessment is depend-
ent on the particular project; a model would give different performance 
if used for two different projects. Based on my own modeling experience, 
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it is proposed that the full evaluation should include the following 11 per-
formance elements:

Results

 1. The extent to which the model describes the behavior of interest (i.e., 
whether it has adequate scope and detail)

 2. The accuracy of the model’s results
 3. The ease with which the model and its results can be understood

Future use of the model

 4. The portability of the model and the ease with which it can be com-
bined with other models

Verification and validation

 5. The probability of the model containing errors (i.e., the model con-
structed does not match the conceptual model)

 6. The accuracy with which the model fits the known historical data 
(black box validity)

 7. The strength of the theoretical basis of the model including the qual-
ity of input data (the credibility of the model or white box validity)

Resources required

 8. The time and cost to build the model (including data collection, veri-
fication, and validation)

 9. The time and cost to run the model
 10. The time and cost to analyze the results of the model
 11. The hardware requirements (e.g., computer memory) of running the 

model

An assessment of the modeling project as a whole would compare the ben-
efits of the project with the costs incurred. The performance assessment of 
a model should consist of the impact of the model on these costs and ben-
efits. The performance elements attempt to focus purely on the effect of the 
model, but it is not possible to isolate this entirely. For example, the resources 
required to build the model not only depend upon the model used, but also 
on a number of other factors such as the ability and experience of the mod-
elers. A single absolute measure of model performance cannot be obtained 
but a meaningful comparison of alternative models in similar circumstances 
should be possible.

The quality of the project conclusions depends upon the quality of the 
results, which is a combination of their accuracy (element 2) and the extent to 
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which they address the modeling objectives (element 1). Clearly, if the results 
are inaccurate then the decisions taken and conclusions drawn are likely 
to be incorrect, although the degree of accuracy required depends on the 
objectives. In certain circumstances, for example, the relative ordering of two 
values may be all that is important rather than their absolute values. In the 
terms of Zeigler (1976), element 1 is the extent to which the model results 
cover the experimental frame. It is also important that the model includes 
the system elements whose effects are to be investigated, i.e., the decision 
variables (unless the model specifically excludes them to allow comparison 
with a previous model that does include them). It is important that the model 
and the results can be understood (element 3) to facilitate the analysis, and 
increased understanding of the systems may be a significant benefit in itself. 
The use of all or part of the model in future projects (element 4) can also be 
an important benefit.

In most cases the model is predictive and so elements 1 and 2 cannot be 
assessed until some time after the modeling project has been completed 
and, indeed, the perceptions of the overall success of the project may change 
over time (Robinson and Pidd 1998). Acceptance of the conclusions from the 
modeling and implementation of the recommendations requires that the 
user has confidence in the model and the user’s confidence should be based 
on elements 5–7. It is therefore important not only that (with the benefit of 
hindsight) the model produced realistic results (element 2), but also that the 
model was seen to be sufficiently realistic at the time the project was car-
ried out (elements 5–7). It is possible for a very unrealistic model to produce 
accurate results (for example, due to compensating errors, particularly if the 
results are a single value). Even if the results of such a model were accepted 
and these led to the correct decisions being taken, the understanding gained 
of the system is likely to be incorrect and this may have serious consequences 
in the future. Elements 5–7 take this into account by giving an assessment 
of the underlying quality of the model. Successful reuse of the model also 
requires the model to have a sound basis, as well as requiring the model to 
be portable (element 4). 

Element 5 relates to the process of verification and so is concerned with 
errors occurring in the model construction step. It is not possible, for most 
models, to ensure that the model constructed will operate as intended in all 
circumstances (i.e., to fully verify it) and so the model may contain errors 
(Gass 1983, Tobias 1991). The probability of the model containing a particular 
error is a product of the probability of the initial model containing the error, 
which partly depends upon the choice of model (as well as the quality of 
the model building), and the conditional probability of the error not being 
discovered in the verification process, which also partly depends upon the 
choice of model (as well as the quality of the verification process). There is 
a trade-off here between the performance elements; the model is less likely 
to contain errors if more resources are put into building and verifying the 
model.
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Elements 6 and 7 assess how well the conceptual model matches the real 
system. It is not sufficient for the model output simply to fit the historical 
data (black box validation); confidence in the model mechanisms, on a theo-
retical basis, by comparison with knowledge of the real system or on the 
basis of successful previous experience (white box validation), is also impor-
tant. It is possible for a model to fit the historical data well but to give poor 
predictions if the basis of the model is incorrect, particularly if the condi-
tions for the period being predicted are very different to those in the past. 
If the system being modeled is one that does not currently exist, validation 
can consist only of an assessment of model credibility (Gass 1983), i.e., ele-
ment 7.

The effect of the choice of the model on the costs of the project is addressed 
by elements 8–11. In some projects, a model already exists and the aim of 
the project is to simplify it or to make it more complex. In this case the time 
and cost of building the model becomes the time and cost of modifying the 
model. Considerable effort can be required in order to simplify an existing 
model (Rexstad and Innis 1985).

An assessment of model performance requires a measurement to be made 
of each of the performance elements and this is far from straightforward. It 
should be possible to evaluate elements 1, 6, 9, and 11 fairly easily in most 
cases, although care is required in the interpretation of the measures used. 
However, the remaining elements are hard to quantify and a subjective 
qualitative assessment may be all that is be possible. The accuracy of the 
results (element 2) may not be known until a long time after the project was 
completed and may never be known for decision scenarios that were not 
implemented. The ease of understanding and the probability of errors both 
contain a human element, which makes a numerical evaluation difficult (ele-
ments 3 and 5). Similarly, the strength of the theory behind the model and 
the credibility of its structure is subjective (element 7). A comparison of the 
resources required to build and analyze alternative candidate models should 
be those required if the model is built from scratch with no prior knowledge 
of the system (elements 8 and 10). Such an assessment therefore ought ide-
ally to consist of measuring the resources used by independent modeling 
teams of equal modeling experience and ability but this will not be feasible 
in most instances. Meaningful measures for the extent to which the scope 
and detail of the results matches the problem requirements and particularly 
the model portability are also likely to be difficult to derive (elements 1 and 
4). An overall assessment of model performance requires a relative weight-
ing to be given to each of the elements and such a weighting will be subjec-
tive and will vary considerably from study to study. It may be possible, for a 
particular study, to ignore some of the elements as insignificant in terms of 
the overall performance. However, if a number of studies attempt to measure 
at least some of the performance elements, the measurement procedure is 
likely to improve.
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2.4 Level of Detail and Complexity

There is no single accepted definition of either level of detail or complexity 
and, in fact, a formal definition is rarely attempted, but, when applied to a 
model, the level (or amount) of detail usually means an assessment of the 
extent to which the observable system elements and the assumed system 
relationships are included in the model. It is usually assessed qualitatively 
and is most often used just to rank alternative models. Level of detail tends 
to refer to the system that the model represents (for example, in the case of a 
model of a production line, the number of machines, parts, etc. included in 
the model) rather than to the precise way in which the model is implemented 
(such as the number of variables used). Models are often described as being 
detailed, meaning that the model contains most of the elements and interac-
tions thought to exist in the system being modeled. For some examples of the 
usage of the level or amount of detail of a model, see Shannon (1975), Banks 
and Carson (1984), Stockle (1992), and Law (2007).

The term complexity is much more common than level of detail although 
it is used in many different ways (Bunge 1963, Henneman and Rouse 1986, 
Gell-Mann 1995) such as the difficulty in computing a function (computa-
tional complexity), a structural attribute of a piece of software (software 
complexity), the difficulty experienced by people in perceiving information 
or solving problems in a particular environment (behavioral complexity) 
and the complexity of terms, sentences and theories (logical and semantic 
complexity). Weaver (1948) categorized the problems tackled by science as 
problems of simplicity, organized complexity (the most difficult), and disor-
ganized complexity, and Chaitin (1975) equated the complexity of a number 
with its randomness.

More recently, the phrase science of complexity has been used to describe 
a scientific discipline covering the study of complex adaptive systems that 
give rise to “emergent properties” (Morowitz 1995, Flatau 1995). In complex-
ity science, the system structures are complex in the sense that they usually 
have many interconnected parts but the term complexity refers, at least to 
an extent, to the behavior of the system in exhibiting emergent properties. 
However, there does not appear to be an agreed definitions of precisely what 
complexity science means (Amaral and Uzzi 2007). Some of the focus in this 
area has been on identifying and understanding different types of behavior 
(e.g., Langton 1990) often split into three categories: ordered (with very lit-
tle change in behavior over time), chaos (changing behavior with little or 
no patterns or regularity), and the category “edge of chaos” at the phase 
transition between the other two categories (changing behavior but a high 
degree of regularity and robustness to perturbations). The models studied 
are often networks and one of the factors determining the type of behav-
ior is the number and type of connections between the network nodes. For 
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example, in Kauffman’s work on Boolean networks, as the number of con-
nections between the nodes increases the type of behavior tends to change 
from the ordered category to the edge of chaos category to the chaos category 
(Kauffman 1993).

Systems theory has perhaps seen the greatest discussion of the concept 
of complexity although this has resulted in a number of different mean-
ings. Flood and Carson (1993) in their extensive discussion of complexity 
considered that complexity meant “anything that we find difficult to under-
stand.” They therefore viewed complexity as a combination of the structure 
of an object (particularly the number of elements and relationships) and of 
the nature of people and the way in which they interact with the object in 
the particular context. Golay et al. (1989) also equated complexity with the 
difficulty in understanding the system, whereas Simon (1964) took a com-
plex system to be “one made up of a large number of parts that interact in 
a non simple way.” Casti (1979) referred to the difficulty in understanding 
a system’s structure as static complexity, which he distinguished from the 
dynamic complexity of the system output noting that a simple structure 
can produce complex output (for example, a simple system can be chaotic). 
Rosen (1977) defined a complex system “as one with which we can interact 
in many different kinds of ways, each requiring a different mode of system 
description,” which varies according to the point of view of the observer, 
whereas George (1977) considered a system to be complex when it contained 
sufficient redundancy to be able to function despite the presence of many 
defects.

Dictionaries usually define complex as being something consisting of many 
parts, as well as often defining it as something that is difficult to understand-
ing (see also Ward’s [1989] discussion of the meaning of simple). For example, 
the Collins English dictionary’s definition of complex is “1. Made up of vari-
ous interconnected parts; composite. 2. (of thoughts, writing, etc.) Intricate or 
involved,” and Chamber’s English dictionary gives “Composed of more than 
one, or of many parts: not simple: intricate: difficult.” Clearly, objects that 
have many interacting parts do tend to be difficult to understand and vice 
versa. The complexity of a model is therefore sometimes used to mean the 
difficulty in understanding the model or the difficulty (in terms of resources 
required) in generating model behavior (Zeigler 1976, 1984; Schruben and 
Yücesan 1993). However, these are performance measures rather than model 
attributes and so, in the first case, for example, the commonly asserted dis-
advantage of complex models that they are difficult to understand is just a 
tautology (Ward 1989).

Complexity is commonly used to refer to a model when comparing the out-
put of alternative models (for example, Blöschl and Kirnbauer [1991], le Roux 
and Potgieter [1991], Durfee [1993], Palsson and Lee [1993], and Smith and 
Starkey [1995]). In such cases, complexity is usually not defined. However, 
it is the structure of the alternative models that is described with the diffi-
culty in understanding being rarely mentioned. It therefore appears that the 
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complexity of a model usually refers to a structural property of the model 
and this is certainly the appropriate usage when comparing the characteris-
tics and performance of different models.

Complexity is therefore being used in a very similar way to level of detail 
and, in comparing models, a number of authors appear to equate the terms 
complex and detailed when referring to the models (for example, Webster et 
al. [1984], Ward [1989], Stockle [1992], and Durfee [1993]). Certainly a simple 
model is generally considered to be the opposite of both a detailed model 
and a complex model. Applying the dictionary definition, complexity would 
be a measure of the number of constituent parts and relationships in the 
model and so complexity should differ from level of detail in referring to the 
actual model elements rather than the system elements and this is assumed 
here. However, the level of detail largely determines the complexity and, in 
most cases, the ordering of alternative models by level of detail or complex-
ity will be the same. If the system being modeled is extremely complex then 
it is possible to build a model that has many parts but which omits many 
system elements, so that such a model would be complex but not detailed. 
In comparing two models, occasionally the more detailed model may be less 
complex if, for example, an approximation to a detailed system relationship 
requires more model elements and connections than the actual relationship, 
although such an approximation would be unlikely to have any advantages. 
There may also be several ways in which a given modeling assumption can 
be implemented (such as alternative algorithms for generating pseudoran-
dom numbers), so that models of the same level of detail may have different 
complexity.

In summary, one distinction between the different uses of complexity is 
that sometimes it refers to the underlying structure of the model or system, 
and sometimes it refers to the dynamic behavior of the model or system. 
These are quite separate since a simple structure can sometimes produce 
complex behavior (e.g., chaos) and a complex structure can sometimes pro-
duce simple behavior with a high degree of regularity. This paper focuses 
on the structural characteristics of conceptual models and how these can 
be related to the different aspects of model performance on the project. 
Therefore, in the remainder of the paper the complexity of the model or con-
ceptual model will refer to the complexity of its structure. Assuming that 
the model can be considered as a number of interconnected parts, or compo-
nents, the overall complexity of the model is taken here to be a combination 
of three elements: the number of components, the pattern of the connections, 
(which components are related) and the nature of the connections (the com-
plexity of the calculations determining the relationships). The aim here is to 
identify invariant structural attributes of the conceptual model and so the 
frequency of occurrence of each connection has not been included as an ele-
ment of complexity as this may depend on the particular model runs carried 
out. Here the three elements are termed size, connectedness, and calcula-
tional complexity, respectively.



40 Conceptual Modeling for Discrete-Event Simulation

2.5 Measuring Model Complexity

If a model can be specified as connected components then it can be repre-
sented as a graph, with the nodes of the graph representing the components 
and the edges representing the connections (i.e., the relationships) and graph 
theory measures used to measure size and connectedness. However, for any 
given model there are likely to be several possible graphs and many alterna-
tive measures.

Models implemented as computer programs can, for most programming 
languages, be graphically represented by the program control graph in 
which the nodes represent blocks of code in which control is sequential 
and the edges represent branches in the program. The complexity measure 
proposed by McCabe (1976) was the number of edges less the number of 
nodes plus twice the number of connected components in the program 
control graph. For a single program (so the number of connected compo-
nents is one), this is equal to the cyclomatic number (which is the number 
of nodes less the number of edges plus the number of connected compo-
nents) of the program control graph with an additional edge added to join 
the last component to the first. This additional edge strongly connects the 
graph so that the cyclomatic number is equal to the maximum number 
of linearly independent circuits in the graph. It therefore represents the 
number of basic paths through the program, which McCabe (1976) equated 
to complexity.

A graph of a discrete-event simulation model is also possible by depict-
ing the events as the nodes and the relationships between the events as the 
edges (Schruben 1983). Events are activities that alter the state of the model 
and two events are related if the occurrence of one of the events can cause 
the other to occur (or can cancel the occurrence of the other). A directed 
edge from event A to event B indicates that if event A occurs and certain 
conditions hold then, after a specified time, event B will occur. Schruben 
and Yücesan (1993) suggested several graph theory measures, including the 
cyclomatic number, which could be applied to event graphs to measure the 
complexity of a model. It is usually not necessary to explicitly model all the 
events occurring in the system and the event graph can be used to iden-
tify events not required. This means, however, that several graphs are pos-
sible for the same conceptual model. For consistency, the graph with the 
minimum number of events should be used for the complexity measure 
(although it is not clear whether there is only one such graph). Activity cycle 
diagrams, which connect the possible states of each entity in the model are 
a further way of representing a discrete-event simulation model as a graph 
(Pidd 2004).

A graph can also be obtained by assigning each possible model state to a 
node and representing possible transitions between the states by the edges, 
or by letting the nodes represent the state variables and the edges interactions 



Complexity, Level of Detail, and Model Performance 41

between the variables (Zeigler 1976). There can be many choices for the state 
variables. Graphs of the interaction between the state variables were used to 
measure the complexity of alternative fate models of toxic substances in a 
lake by Halfon (1983a, 1983b). He used Bosserman’s (1982) c̄ measure, which 
is the proportion of paths of length ≤ n (where n is the number of nodes) 
that exist in the graph. The measure can be obtained using the adjacency 
matrix A, which has aij = 1 if there is a connection from node i to node j and 
0  otherwise. The matrix Ak, obtained by k multiplications of matrix A by itself 
using Boolean algebra, has aij = 1 if and only if there exists a path from node 
i to node j of length k. The c̄ measure is then given by the sum of all the ele-
ments in the matrices A, A2,…, An divided by n3 (the total number of elements 
in these matrices).

A graph theory measure may not always be static. Neural networks are 
typically defined in terms of nodes and connections, and many other adap-
tive systems models can be represented in this way (Farmer 1990), which 
gives a natural graph of the model structure. In these models, a complexity 
measure based on such a graph would change as the model runs as a result 
of the connections changing.

In comparing models, differences in the complexity of the models may 
be due to differences in the complexity of the calculations and so the graph 
theory measures may be inappropriate or may need to be combined with 
other measures.

An alternative approach to graph theory may be to use concepts from infor-
mation theory. Golay et al. (1989) used the following information entropy 
measure as a complexity measure:
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where H = information entropy, n = number of system states, pi = probability 
of the ith state.

They justified the use of information entropy as a complexity measure by 
arguing that entropy measures the amount of uncertainty and that a more 
complex model is more difficult to understand and therefore more uncertain. 
This measure can only be used in the very limited cases when it is practical 
to estimate the probability of each system state. Golay et al. (1989) applied the 
measure to systems in which each component had only two states. The use 
of the entropy measure can also be argued on the basis that it measures 
the complexity of the behavior of the model (Langton 1990), in terms of both 
the number of systems states in total and relative proportion of time spent 
at each state. Again this indicates a likely correlation with the difficulty in 
understanding the model and its results. This measure, as it stands, does not 
measure the complexity of the conceptual model as it is not a direct measure 
of a structural property of the model but rather a measure of the complexity 
of the model behavior for a particular run. However, it may be possible to 
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use similar concepts to measure the amount of information contained in the 
model, although it is not clear how to do this at present.

In computer science, many measures (usually termed metrics) of the size 
and complexity of the code have been proposed and these can be used to 
measure the complexity of a model taking the form of software. Most of 
the metrics are based on counting the occurrence of particular items in the 
code, such as the number of decision points or just the number of lines of 
code. An alternative approach developed by Henry and Kafura (1981) is to 
 identify the flows of information between separate program procedures 
and to incorporate the number of different flows into the metric. Many of 
the software metrics, however, are partly dependent on the programming 
 language used, whereas the aim here is to measure the complexity of the 
conceptual model, which should be independent of the specific implementa-
tion of the model.

The purpose of a complexity measure is to characterize the model so that 
this information can aid the choice of model by predicting model perform-
ance. Ideally we would like to have a single, system independent definition 
and measure of complexity covering all the aspects of the level of detail of a 
model and applicable to all conceptual models. However no such definition 
or measure exists and as a result the term complexity itself is a source of con-
fusion due to its usage in many different contexts. The best approach would 
seem to be to identify more specific model attributes, such as the attributes 
of size, connectedness, and calculational complexity discussed in Section 2.4 
and to devise measures for these. It is important that such measures and the 
type of measurement scale should match our intuitive notion of the nature of 
the attribute, which, for example, is not always the case with software met-
rics (Fenton 1991). In addition, the earlier in the modeling process in which a 
measure can be obtained, the more useful it is.

2.6  Relationship between Model Performance and 
the Level of Detail or Complexity of a Model

The level of detail and complexity of a model are widely recognized as 
having very important effects on model performance and the relationships 
between either the level of detail or complexity of the model and model 
performance have been discussed in general terms in a number of places 
(for example, by Meisel and Collins [1973], Fishwick [1988], Law [1991], and 
Salt [1993]). A more complex model is expected to have greater validity and 
to give more detailed and accurate results, but to use more resources, and 
to be more likely to contain errors, more difficult to understand and less 
portable (i.e., better for performance elements 1–3, 5, and 6 but worse for 
the others).
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In the fields of management science and operational research, modeling 
projects are often carried out for a client with little modeling experience. 
There are a number of additional reasons why the client will prefer a simple 
model and so is more likely to implement the results. Ward (1989) set out a 
number of advantages, from a clients point of view, of using a simple model 
including the quicker generation of results and the production of results that 
are easier to understand and less specific thus allowing the clients own pref-
erences to be incorporated. A simple model is also more flexible and so can 
be adapted more easily if the project objectives change (Law et al. 1993).

The precise nature of the relationships between the level of detail or com-
plexity and the aspects of model performance are poorly understood. There 
are a few studies that have compared alternative models from different 
points of view. However, the objectives of these studies have not specifically 
been to compare the level of detail and performance of the models and as a 
result they have tended not to quantify either of these attributes. These stud-
ies are briefly reviewed as they do provide some indication of the possible 
relationships.

The studies of Stockle (1992) and Rexstad and Innis (1985) took existing 
ecological models and attempted to simplify them. Stockle simplified a 
model of the amount of radiation intercepted by plant canopies. The most 
detailed model had nine leaf inclination classes, nine azimuth angle classes 
and 20 layers of leaves. The number of classes of each of these three elements 
could be reduced to simplify the model and Stockle found that by doing this 
the computation time of the model could be reduced by a factor of 12 with 
a negligible change in results and by 63 with only a small change in results. 
This suggests that many models may be more complicated than they need 
to be and this often seems to be the case in  discrete-event simulation mod-
eling. Innis and Rexstad (1983) produced a list of simplification techniques 
and they subsequently applied some of these techniques to three models 
(Rexstad and Innis 1985) but this latter paper focused on the applicability 
of their techniques to the three models rather than on a detailed compari-
son of the original and simplified models. Consequently, quantitative meas-
ures of model performance were not reported apart from fitness measures 
for one of the models. It is therefore difficult to assess the extent to which 
the models had been simplified or the effect of the simplifications on model 
performance.

Costanza and Sklar (1985), by contrast, did carry out a quantitative com-
parison of different models. They compared 87 freshwater wetland ecosys-
tem models using measures termed articulation and descriptive accuracy. 
Diminishing returns indices were calculated for the number of  components, 
time steps, and spatial units in the model (with each index  having a differ-
ent scaling factor). The average of the three indices was calculated for the 
data and for the model and the minimum of these two  numbers used for 
the articulation measure. This was therefore a measure of the scope and 
complexity of the problem (i.e., of the experimental frame). The descriptive 
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accuracy index was a validity measure of the fit of the model data against 
the actual historical data. They were able to calculate both of these meas-
ures for 26 of the models and they also calculated a combined articulation 
and accuracy measure called effectiveness. They found that the models with 
the highest descriptive accuracy had low articulation (although the major-
ity of the 26 models had low articulation), i.e., the models with the greatest 
validity tended to be those addressing the simpler problems. It is difficult 
to draw concrete conclusions from this result as the amount of data is rela-
tively small but Costanza and Sklar hypothesized that, ultimately, greater 
articulation necessitates less accuracy and that there might be a level of 
articulation that maximizes effectiveness (which they considered to be the 
best model). This assumes that greater articulation is desirable, in the sense 
that a model with greater articulation provides more information about the 
system. Often, however, the modeling objectives are quite specific and only 
greater information relevant to the problem (i.e., within the experimental 
frame) is a benefit.

Webster et al. (1984) viewed the selection of the level of detail as part of 
the validation process and so the only measure they reported was the good-
ness of fit against actual data for the alternative timber harvesting models 
that they compared. They considered the appropriate level of detail to be the 
simplest model of adequate validity that is consistent with the expected sys-
tem relationships (ignoring the accuracy of results that can only be assessed 
subsequently). They used three alternative methods to generate sample data 
for three input variables in a simulation model (giving 27 alternatives in all): 
mean value, regression, and a histogram of actual data. For one of the vari-
ables they found that the histogram method (which they considered the most 
complex level) gave output of lower validity than the simpler methods. Four 
of the models gave adequate validity and so they chose the simplest of these 
as the final model.

Halfon’s studies (1983a, 1983b) compared the structure of alternative models 
of a toxic substance in a lake at six levels of detail. This was done for a model 
with six state variables and for a model with 10 state variables and repeated 
in each case with and without internal recycling (giving four sets of results). 
He compared the structures of the models, mainly using Bosserman’s (1982) 
c̄ measure (described earlier), which was applied to the graphs of interactions 
between state variables. The level of detail of the models was increased by 
adding the physical processes in stages in a logical order. He found that, in 
each case, adding the last few levels of detail only caused a small increase in 
the number of connections. He argued that it was not worth including these 
processes as they are unlikely to affect model behavior significantly and the 
additional parameters add to the amount of uncertainty in the model. It is 
reasonable to expect diminishing returns as complexity is added. However, 
the actual performance of the models was not assessed to confirm this. 
Halfon (1983b) also suggested displaying the comparisons of alternative 
model structures as a Hasse diagram.
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The lack of studies that have specifically sought to examine the effect of 
level of detail or complexity on model performance means that even if the 
expected relationships described at the beginning of this section are gen-
erally true, the nature of the relationships are unclear (linear, increasing 
returns, decreasing returns, etc.) and the circumstances in which the rela-
tionships break down are not understood. The particular elements of model 
complexity that have the greatest effect on each performance element have 
also not been identified.

Consider, for example, the accuracy of model results. Generally a more 
complex model is expected to be more accurate and as the model becomes 
more complex the increase in accuracy of adding further complexity is likely 
to reduce (assuming that additional detail is added in order of relevance), i.e., 
decreasing returns. Certainly, if there is a mapping between the models so 
that the more complex model can be reduced to the simpler model by a suit-
able choice of parameters, then the most accurate complex model must be at 
least as accurate as the most accurate simple model. However, the choice is 
often between models of different types or between models for which only 
an approximate relationship exists. In this case, it is possible for the simpler 
model to be more accurate, although a comparison of the complexity of the 
models is more difficult. For example, empirical models are sometimes more 
accurate than quasi-physically based models, which would generally be 
considered to be more complex (Decoursey 1992). For some modeling (such 
as physically based distributed parameter models), the input parameters 
cannot be directly measured but must be inferred by calibrating the model 
against the historical data (Allison 1979). This is called the inverse problem of 
parameter identification and its nature means that there may be a wide range 
of parameter values that give a good fit. In this case, the results of a model 
should be a range of predictions rather than a single prediction (Brooks et 
al. 1994) and a more complex model may give a wider range. The range will 
depend on the number of parameters in the model and the extent to which 
they are allowed to vary (i.e., the size of the parameter space).

There may also be occasions when a simpler model takes longer to build. 
Garfinkel (1984) pointed out that in modeling a large system, which is con-
sidered to consist of a large number of subsystems, there is a much greater 
choice of simple models (which just model a few subsystems thought to be 
important) than complex models and it may take longer to choose between 
the alternative simple models than it would have taken to build a model of 
the whole system.

Also, a simple model, by incorporating only some of the system elements, 
may allow the identification of system relationships that are obscured in a 
more complex model and so gives a greater understanding of the system. On 
the other hand, a complex model may extend understanding by allowing the 
investigation of the effect on the system of many more factors. The process 
of identifying, building, and comparing models at different levels of detail 
can greatly increase the understanding of the system. Such a process could 
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be used to link simple strategic models that are difficult to verify with more 
detailed tactical models that can be tested against available data (Murdoch et 
al. 1992). If the main purpose of the study is gaining an understanding of the 
system then the benefits of building models at several levels of detail may be 
well worth the additional effort involved.

In computer science software metrics have been developed to control and 
predict the performance of software projects (Demarco 1982). Attempts have 
been made to predict the resources required for and the likely number of 
errors in a piece of software from particular software attributes (such as 
“complexity”). Fairly strong relationships have been found within particular 
environments (for example, by Boehm [1981]) although none of these appear 
to be generally applicable. A similar approach in simulation might help in 
predicting the performance of alternative conceptual models.

The discussion in this section indicates that the relationship between the 
level of detail or complexity and model performance is more complicated 
than some of the comments in the literature would suggest and the lack of 
studies in this area means that the relationship is poorly understood. What is 
required is a number of studies that measure the elements of the complexity 
and performance of alternative models and one such experiment is described 
in Section 2.8. This would provide data from which to develop empirical 
relationships and may lead to a theoretical basis for the relationships. 

2.7 Simplification and Other Related Areas

The selection of the best model requires not just an appreciation of the likely 
performance of each model but also a knowledge of the possible alternative 
models. There are very many models that could be built in most cases and so 
the best model may not even be identified as a possible model. Structuring 
the models by level of detail or complexity can help in the search for  better 
models and one way of identifying new models is to take an existing model 
and then attempt to simplify it (Zeigler 1979). Zeigler (1976) set out four cate-
gories of simplification methods; dropping unimportant parts of the model, 
replacing part of the model by a random variable, coarsening the range 
of values taken by a variable, and grouping parts of the model together. 
The simplified model using these methods will be of the same type as the 
 original; it is also possible to replace part of a model with a model of a dif-
ferent type such as analyzing the inputs and outputs of the particular part 
and replacing it with a regression equation, analytical equation or neural 
network (if the original part was very complex). Sevinc (1990) developed a 
semiautomatic simplification program for discrete-event simulation models 
based on Zeigler’s (1976) DEVS model formalism and simplification ideas. 
I have previously simplified models in population genetics (Brooks et al. 
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1997a, 1997b), wheat simulation (Brooks et al. 2001), and manufacturing sys-
tems (Brooks and Tobias 2000) based on sensitivity analysis and detailed 
analysis of the behavior and workings of the model. In each case the proc-
ess of simplification provided important insights into the system behavior 
(Brooks and Tobias 1999). Innis and Rexstad (1983) listed and described 17 
simplification techniques. These are specific techniques, some of which fall 
under Zeigler’s (1976) categories, as well as techniques for replacing part of 
the model with a different type. Innis and Rexstad (1983) also included tech-
niques for identifying which parts of the model might be suitable for simpli-
fication, techniques for reducing the number of model runs or run times and 
techniques for improving the readability of the model code. They stated that 
their list was not exhaustive, and it would appear that a general simplifica-
tion methodology does not exist.

Zeigler’s (1976) DEVS model formalism provides a framework within 
which alternative discrete-event simulation models can be compared. 
Addanki et al. (1991) proposed representing the alternative models as nodes 
on a graph with the edges representing the changes in assumptions from 
one model to another. Moving around the graph is an alternative way of 
searching the space of models to which Addanki et al. (1991) applied arti-
ficial intelligence techniques. An approach applied to engineering models 
has been to generate a database of model fragments and then to automate 
the process of selecting and combining the fragments to produce the model 
(Falkenheimer and Forbus 1991, Nayak 1992, Gruber 1993). Developments 
have also taken place in variable resolution modeling, which allows the 
level of detail of the model to be changed easily even while the model is 
running (e.g., Davis and Hillestad 1993), and this may be a suitable environ-
ment within which to investigate the effect of level of detail.

2.8 Experiment on Model Characteristics and Performance

In order to try and improve the understanding of the relationship between 
model characteristics and model performance a small scale experiment 
was carried out. Among the 11 performance elements set out in Section 
2.3 are the time taken to build the model, the likelihood of errors, and the 
ease of understanding of the model and the results. These were compared 
for four discrete-event simulation models of production lines by analyz-
ing the performance of the 33 students on the MSc Operational Research 
course at the University of Birmingham (UK) in answering questions on 
the models and in building the models. The reason for this approach is 
that, in order to assess the effects of the differences between the models 
on these performance elements, the models should be built by different 
 people of roughly equal ability and experience. Otherwise, if more than 
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one model is built by the same person, building, and analyzing the first 
model helps with the next.

As discussed in the previous sections, the complexity of a model is the 
most common model characteristic related to performance in the literature, 
and yet it is not defined clearly. Section 2.4 proposed that the overall com-
plexity of a model can be considered as a combination of its size (the number 
of nodes or elements), its connectedness (the average number of connections 
per element), and its calculational complexity (the complexity of the calcula-
tions making up the connections). The aim of the experiment was to examine 
the effects of these characteristics and so the models were devised to differ 
in these three aspects.

The models used are shown in Figure 2.1. Since they represent production 
lines, the natural definition for the elements is machines and buffers with the 
connections being the routes taken by the parts. Models A and B both have 
eight machines and eight buffers in the same basic layout with model A having 
more part routes (23 compared to 19) and hence higher connectedness. Model 
C has five machines and five buffers laid out in the same way as a portion of 
model A and differs from A mainly in size. Model D has only three machines 
and three buffers but has the most complex calculations to determine the part 
routes. Model D has high connectedness and calculational complexity.

The models were assigned at random to the students. The students were 
quite inexperienced modelers, having received between 14 and 16 hours of 
tuition, mainly consisting of hands on experience together with some for-
mal teaching and demonstrations. The first stage of the experiment aimed 
to compare how easy the models were to understand. The students were 
each asked the same four written questions on aspects of the behavior of 
the particular model assigned to them, and were provided with the model 
description and selected model output. The second stage focused on model 
building and the students were each timed as they built their model using 
the WITNESS software (Lanner Group Ltd., Redditch, UK). The number 
of errors in each model was subsequently determined (the students were 
instructed to build the model as quickly as they could but not to test it). The 
results are shown in Table 2.1.

Using analysis of variance (ANOVA), the differences between the mod-
els are statistically significant at the 5% level for build time ( P = 0.032 ), 
question 2 ( P = 0.014 ) and question 3 ( P = 0.022 ), but not for question 1, 
question 4, the average mark for all questions and the number of errors.

For build time calculational complexity appears to have the most effect 
with model D taking considerably longer to build than the other models. 
With a package like WITNESS, which is user-friendly and already contains 
many of the constructs required, thinking time is the most important com-
ponent of the build time, and so it is the complex and less familiar com-
mands that are the most important. Observations also indicated that the 
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aspects of the model that were easy to code were completed very quickly by 
the students.

The questions were analyzed both by comparing the marks and by con-
sidering the reasoning process required to answer each question, which is 
discussed in detail in Brooks (1996). Students were asked to give a reason for 
their answer and considerable importance was given to this since the aim 
was to assess understanding. Both the correct answer and correct reason 
were required to score 1 mark. If either the answer or reason was only par-
tially correct then 1/2 mark was awarded. An incorrect answer or the correct 
answer with an incorrect reason scored 0 marks. As stated above, the signifi-
cant differences between the models were on questions 2 and 3. Question 2 
asked “Which machine(s) is the bottleneck?” and the average mark was much 
higher for the model D participants (72%) than for the other models (19%, 
31%, and 25% for A, B, and C, respectively). The small size of model D made 
this question easier to answer because there are fewer elements to compare 
to identify the bottleneck. In fact machine M2 is rarely in operation and so 
this question only required comparing two machines. This also meant that 
there were more acceptable reasons for the correct answer than for the other 
models. Question 3 asked “Which buffer(s) were full at some time during 
the period?” and could be answered by identifying blocked machines from 
the output statistics. The average marks were much higher for models B and 
D (81 and 72%, respectively) than for models A and C (25 and 44%, respec-
tively). Again this reflects the question being inherently easier for models B 
and D since the blocked machines only sent parts to one buffer, whereas in 
models A and C they sent parts to several buffers. Therefore, the difference 
in marks seems to be a result of lower connectedness in the critical section 
of the models.

The marks were not statistically significant at the 5% level for questions 
1 and 4. Question 1 (“How many parts were sent to SHIP in the period?”) 
was expected to be harder for model D since the calculation is more com-
plex but, in fact, the average mark was similar to that for models A and B 
perhaps again reflecting that the small size means that it is easier to iden-
tify the correct part of the model to focus on. Question 4 (“Estimate the % 
increase in output if [a given machine] cycle time is reduced to 10,” where 
the given machine was chosen not to be the bottleneck) was expected to be 
easier for model D, but the marks were only slightly higher than for the other 
models.

Overall the indication is that the difficulty in understanding is mainly 
affected by size and connectedness with calculational complexity being 
much less important, although this of course depends on the specific ques-
tion being considered. This is probably because the fine details can often be 
ignored in understanding the system with just an appreciation of which ele-
ments influence each other being required.

Most of the model building errors for models A, B, and C occurred in 
the input and output rules for assembly machines, which were relatively 
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complex commands that the students were less familiar with. The number 
of errors therefore reflects the comparative occurrence of these commands 
in the models, with models A and B having two assembly machines and 
model C one (each error was counted separately including repeated errors). 
Most of the errors for model D were either omissions or occurred in a 
complex command unique to model D. Generally, the majority of errors 
are likely to occur in the more complex aspects of the model, and so the 
number of errors is expected to be most closely related to calculational 
complexity.

The sample sizes here for each model (8 or 9) are small and the results will 
depend to some extent on the type of models used and the questions asked. 
The results can therefore only suggest possible relationships between model 
attributes and performance and more work is required to investigate this 
further.

2.9 Conclusions

The lack of research into the process of choosing the best model is sur-
prising given the importance of modeling in science. There are very few 
studies that have made any quantitative assessment of the effect of differ-
ent model attributes on the modeling process. This probably stems from 
the difficulty in measuring either suitable attributes or model performance 
and also the effort required to build several alternative models. Different 
models are most often compared by their level of detail or complexity 
although such a comparison is usually only qualitative and level of detail 
and complexity are usually not defined clearly. This chapter introduces 
the more specific model characteristics of size, connectedness, and calcu-
lational complexity.

The lack of model comparisons has resulted in only vague guidelines to 
aid the choice of model. The initial requirement is for a considerable number 
of studies that compare, preferably quantitatively, some aspects of model per-
formance for alternative models. This chapter describes a small-scale study 
of this type, which indicated that the difficulty in understanding the model 
and the results is mainly caused by size and connectedness, whereas build 
time is mainly related to calculational complexity.

A common piece of advice in conceptual modeling and choosing the level 
of detail is to use past experience and so, at the very least, the quantitative 
comparison of alternative models would provide a source of modeling expe-
rience from which to draw. Ultimately this approach could lead to the devel-
opment of general principles and hopefully to a methodology for choosing 
the best model. A corresponding methodology for simplification is also 
necessary.



Complexity, Level of Detail, and Model Performance 53

Acknowledgments

Some sections of this chapter are based on Brooks, R. J., and A. M. Tobias. 
1996. Choosing the best model: Level of detail, complexity and model per-
formance. Mathematical and Computer Modelling 24(4):1–14.

References

Addanki, S., R. Cremonini, and J. S. Penberthy. 1991. Graphs of models. Artificial 
Intelligence 51:145–177.

Allison, H. 1979. Inverse unstable problems and some of their applications. 
Mathematical Scientist 4:9–30. 

Amaral, L. A. N., and B. Uzzi. 2007. Complex systems: A new paradigm for the inte-
grative study of management, physical, and technological systems. Management 
Science 53(7):1033–1035.

Banks, J., and J. S. Carson. 1984. Discrete-Event System Simulation. Englewood Cliffs, 
NJ: Prentice-Hall.

Blöschl, G., and R. Kirnbauer. 1991. Point snowmelt models with different degrees of 
complexity: Internal processes. Journal of Hydrology 129:127–147.

Boehm, B. W. 1981. Software Engineering Economics. Englewood Cliffs, NJ: Prentice-
Hall.

Bosserman, R. W. 1982. Structural comparison for four lake ecosystem models. In 
A General Survey of Systems Methodology: Proceedings of the Twenty-sixth Annual 
Meeting of the Society for General Systems Research, ed. L. Troncale, 559–568. 
Washington, DC.

Brooks, R. J. 1996. A Framework for Choosing the Best Model in Mathematical Modelling 
and Simulation. Ph D thesis, University of Birmingham, UK.

Brooks, R. J., D. N. Lerner, and A. M. Tobias. 1994. Determining a range of predic-
tions of a groundwater model which arise from alternative calibrations. Water 
Resources Research 30(11):2993–3000.

Brooks, R. J., and S. Robinson. 2001. Simulation, with Inventory Control (author 
C. Lewis), Operational Research Series. Basingstoke: Palgrave.

Brooks, R. J., M. A. Semenov, and P. D. Jamieson. 2001. Simplifying Sirius: Sensitivity 
analysis and development of a meta-model for wheat yield prediction. European 
Journal of Agronomy 14(1):43–60.

Brooks, R. J., and A. M. Tobias. 1999. Methods and Benefits of Simplification in 
Simulation. In Proceedings of the U.K. Simulation Society (UKSIM 99), ed. 
D. Al-Dabass and R. Cheng, 88–92. U.K. Simulation Society.

Brooks, R. J., and A. M. Tobias. 2000. Simplification in the simulation of manufactur-
ing systems. International Journal of Production Research 38(5):1009–1027.

Brooks, R. J., A. M. Tobias, and M. J. Lawrence. 1997a. A time series analysis of the 
population genetics of the self-incompatibility polymorphism. 1. Allele fre-
quency distribution of a population with overlapping generations and variation 
in plant size. Heredity 79:350–360.



54 Conceptual Modeling for Discrete-Event Simulation

Brooks, R. J., A. M. Tobias, and M. J. Lawrence. 1997b. A time series analysis of the 
population genetics of the self-incompatibility polymorphism. 2. Frequency 
equivalent population and the number of alleles that can be maintained in a 
population. Heredity 79:361–364.

Bunge, M. 1963. The Myth of Simplicity: Problems of Scientific Philosophy. Englewood 
Cliffs, NJ: Prentice-Hall.

Casti, J. L. 1979. Connectivity, Complexity, and Catastrophe in Large-Scale Systems. 
New York: John Wiley and Sons.

Chaitin, G. J. 1975. Randomness and mathematical proof. Scientific American 
232(May):47–52.

Costanza, R., and F. H. Sklar. 1985. Articulation, accuracy and effectiveness of 
mathematical models: A review of freshwater wetland applications. Ecological 
Modelling 27(1–2):45–68.

Courtois, P.-J. 1985. On time and space decomposition of complex structures. 
Communications of the ACM 28(6):590–603.

Davis, P. K., and R. Hillestad. 1993. Families of models that cross levels of resolu-
tion: Issues for design, calibration and management. In Proceedings of the 1993 
Winter Simulation Conference, ed. G. W. Evans, M. Mollaghasemi, E. C. Russell, 
and W. E. Biles, 1003–1012. New York: IEEE.

Decoursey, D. G. 1992. Developing models with more detail: Do more algorithms give 
more truth? Weed Technology 6(3):709–715.

Demarco, T. 1982. Controlling Software Projects: Management, Measurement and 
Estimation. New York: Yourdon Press.

Durfee, W. K. 1993. Control of standing and gait using electrical stimulation: Influence 
of muscle model complexity on control strategy. Progress in Brain Research 
97:369–381.

Falkenheimer, B., and K. D. Forbus. 1991. Compositional modelling: Finding the right 
model for the job. Artificial Intelligence 51:95–143.

Farmer, J. D. 1990. A rosetta stone for connectionism. Physica D 42:153–187.
Fenton, N. E. 1991. Software Metrics: A Rigorous Approach. London: Chapman and 

Hall.
Fishwick, P. A. 1988. The role of process abstraction in simulation. IEEE Transactions 

on Systems, Man and Cybernetics 18(1):19–39.
Flatau, M. 1995. Review Article: When order is no longer order—Organising and the 

new science of complexity. Organization 2(3–4):566–575.
Flood, R. L., and E. R. Carson. 1993. Dealing with Complexity: An Introduction to the 

Theory and Application of Systems Science, 2nd edition. New York: Plenum Press.
Fripp, J. 1985. How effective are models? Omega 13(1):19–28.
Garfinkel, D. 1984. Modelling of inherently complex biological systems: Problems, 

strategies, and methods. Mathematical Biosciences 72(2):131–139.
Gass, S. I. 1983. What is a computer-based mathematical model? Mathematical 

Modelling 4:467–472.
Gell-Mann, M. 1995. What is complexity? Complexity 1(1):16–19.
George, L. 1977. Tests for system complexity. International Journal of General Systems 

3:253–258.
Golay, M. W., P. H. Seong, and V. P. Manno. 1989. A measure of the difficulty of sys-

tem diagnosis and its relationship to complexity. International Journal of General 
Systems 16(1):1–23.



Complexity, Level of Detail, and Model Performance 55

Gruber, T. R. 1993. Model formulation as a problem solving task: Computer-assisted 
engineering modelling. International Journal of Intelligent Systems 8(1):105–127.

Halfon, E. 1983a. Is there a best model structure? I. Modelling the fate of a toxic sub-
stance in a lake. Ecological Modelling 20:135–152. 

Halfon, E. 1983b. Is there a best model structure? II. Comparing the model structures 
of different fate models. Ecological Modelling 20:153–163.

Henneman, R. L., and W. B. Rouse. 1986. On measuring the complexity of monitor-
ing and controlling large-scale systems. IEEE Transactions on systems, man and 
cybernetics SMC-16:193–207.

Henry, S., and D. Kafura. 1981. Software quality metrics based on information flow. 
IEEE Transactions on Software Engineering 7(5):510–518.

Hunt, J. C. R. 1994. Presidential address: Contributions of mathematics to the solution 
of industrial and environmental problems. IMA Bulletin 30:35–45.

Innis, G. S., and E. Rexstad. 1983. Simulation model simplification techniques. 
Simulation 41(1):7–15.

Jakeman, A. J., and G. M. Hornberger. 1993. How much complexity is warranted in a 
rainfall-runoff model? Water Resources Research 29:2637–2649.

Jeffers, J. N. R. 1991. From free-hand curves to chaos: Computer modelling in ecol-
ogy. In Computer Modelling in the Environmental Sciences, ed. D. G. Farmer and 
M. J. Rycroft, The Institute of Mathematics and its Applications Conference 
Series no. 28:299–308. Oxford: Clarendon Press.

Kauffman, S. A. 1993. The Origins of Order: Self-Organisation and Selection in Evolution. 
New York: Oxford University Press.

Langton, C. G. 1990. Computation at the edge of chaos: Phase transitions and emer-
gent computation. Physica D 42:12–37.

Law, A. M. 1991. Simulation model’s level of detail determines effectiveness. Industrial 
Engineering 23(10):16–18.

Law, A. M. 2007. Simulation Modeling and Analysis, 4th edition. New York: McGraw-
Hill.

Law, A. M., J. S. Carson, K. J. Musselman, J. G. Fox, S. K. Halladin, and O. M. Ulgen. 
1993. A forum on crucial issues in the simulation of manufacturing systems. 
In Proceedings of the 1993 Winter Simulation Conference, ed. G. W. Evans et al., 
916–922. New York: IEEE.

le Roux, J. A., and M.S. Potgieter. 1991. The simulation of Forbush decreases with time-
dependent cosmic-ray modulation models of varying complexity. Astronomy 
and Astrophysics 243:531–545.

McCabe, T. J. 1976. A complexity measure. IEEE Transactions on Software Engineering 
2(4):308–320.

Meisel, W. S., and D. C. Collins. 1973. Repro-modelling: An approach to efficient 
model utilization and interpretation. IEEE Transactions on Systems, Man and 
Cybernetics SMC-3:349–358.

Morowitz, H. 1995. The emergence of complexity. Complexity 1(1):4–5.
Murdoch, W. W., E. McCauley, R. M. Nisbet, W. S. C. Gurney, and A. M. De Roos. 1992. 

Individual-based models: Combining testability and generality. In Individual-
Based Models and Approaches in Ecology: Populations, Communities and Ecosystems, 
ed. D. L. DeAngelis and L. J. Gross, 18–35. New York: Chapman and Hall.

Nayak, P. P. 1992. Automated modelling of physical systems. Ph.D. thesis, Computer 
Science Department, Stanford University, Technical Report STAN-CS-92-1443.



56 Conceptual Modeling for Discrete-Event Simulation

Palsson, B. O., and I. Lee. 1993. Model complexity has a significant effect on the 
numerical value and interpretation of metabolic sensitivity coefficients. Journal 
of Theoretical Biology 161:299–315.

Pidd, M. 2004. Computer Simulation in Management Science, 5th edition. Chichester: 
John Wiley and Sons.

Rexstad, E., and G. S. Innis. 1985. Model simplification: Three applications. Ecological 
Modelling 27(1–2):1–13.

Robinson, S. 2008. Conceptual modeling for Simulation Part I: Definition and require-
ments. Journal of the Operational Research Society 59:278–290.

Robinson, S., and M. Pidd. 1998. Provider and customer expectations of successful 
simulation projects. Journal of the Operational Research Society 49:200–209.

Rosen, R. 1977. Complexity as a system property. International Journal of General 
Systems 3:227–232.

Salt, J. D. 1993. Keynote address: Simulation should be easy and fun! In Proceedings 
of the 1993 Winter Simulation Conference, ed. G. W. Evans et al., 1–5. New York: 
IEEE.

Schruben, L. 1983. Simulation modelling with event graphs. Communications of the 
ACM 26(11):957–963.

Schruben, L., and E. Yücesan. 1993. Complexity of simulation models: A graph 
theoretic approach. In Proceedings of the 1993 Winter Simulation Conference, ed. 
G. W. Evans et al., 641–649. New York: IEEE.

Sevinc, S. 1990. Automation of simplification in discrete event modelling and simula-
tion. International Journal of General Systems 18(2):125–142.

Shannon, R. E. 1975. Systems Simulation: The Art and Science. Englewood Cliffs, NJ: 
Prentice-Hall.

Simon, H. A. 1964. The architecture of complexity. General Systems Yearbook 10:63–76.
Smith, D. E., and J. M. Starkey. 1995. Effects of model complexity on the performance 

of automated vehicle steering controllers: Model development, validation and 
comparison. Vehicle System Dynamics 24:163–181.

Stockle, C. O. 1992. Canopy photosynthesis and transpiration estimates using radia-
tion interception models with different levels of detail. Ecological Modelling 
60(1):31–44.

Tilanus, C. B. 1985. Failures and successes of quantitative methods in management. 
European Journal of Operational Research 19:170–175.

Tobias, A. M. 1991. Verification, validation and experimentation with visual inter-
active simulation models. Operational Research Tutorial Papers, The Operational 
Research Society.

Ward, S. C. 1989. Arguments for constructively simple models. Journal of Operational. 
Research Society 40(2):141–153.

Webster, D. B., M. L. Padgett, G. S. Hines and D. L. Sirois. 1984. Determining the 
level of detail in a simulation model: A case study. Computers and Industrial 
Engineering 8(3–4):215–225.

Weaver, W. 1948. Science and complexity. American Scientist 36(Autumn):536–544.
Zeigler, B. P. 1976. Theory of Modelling and Simulation. New York: John Wiley.
Zeigler, B. P. 1979. Multilevel multiformalism modeling: An ecosystem example. 

In Theoretical Systems Ecology: Advances and Case Studies, ed. E. Halfon, 17–54. 
New York: Academic Press.

Zeigler, B. P. 1984. Multifacetted Modelling and Discrete Event Simulation. London: 
Academic Press.



57

3
Improving the Understanding 
of Conceptual Modeling

Wang Wang and Roger J. Brooks

3.1 Introduction

Conceptual modeling is a crucial stage of the simulation modeling process, 
and yet it is poorly understood. Brooks and Robinson (2001) defined a con-
ceptual model is “a software independent description of the model that is to 
be constructed.” Conceptual modeling therefore involves deciding the way 
in which the virtual world of the simulation model should work (Section 2.1). 
The conceptual model may be documented fully, such as in an annotated 
system process flowchart, or it may only be documented partially, or even 
not documented at all. In the absence of documentation, conceptual mod-
eling still takes places and the conceptual model comprises the combined 
decisions of the project team in determining the way the model should work. 
Conceptual modeling is a separate stage to model coding, which consists of 
writing the computer code for the model (often using a simulation software 
package). One aspect of conceptual modeling is deciding how much detail to 
include in the model and Law (1991) considered that for simulation projects 
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“the most difficult aspect of a study is that of determining the appropriate 
level of model detail.” However, little attention is devoted to conceptual 
modeling in most textbooks. 

The advice that is provided often centers on the complexity or level of detail 
of the model. For example, Robinson (1994) proposed that the basic rule for 
what to include in a model is to use the minimum components required to 
achieve the project’s objective. In fact, “Model Simple–Think complicated” is 
one of Pidd’s (2003) principles of modeling, and Ward (1989) and Salt (1993) 
also set out a number of advantages of a simple model. However, definitions 
of level of detail and complexity are not usually provided in the literature 
and there are no agreed ways of measuring them.

A particularly interesting study in this area is that of Willemain (1995) 
who carried out an experiment to investigate the initial stages of a mod-
eling project. The experiment consisted of providing operational research 
(OR) experts with a description of an OR modeling problem, and asking the 
expert to speak aloud their thoughts on tackling the problem for a period 
of an hour, while recording this on tape. Transcripts of the recordings were 
then analyzed by breaking them into “chunks” (from a phrase to a couple of 
sentences) and categorizing each one by a topic in the modeling process. The 
five topics used by Willemain were context, structure, realization, assess-
ment, and implementation.

In Willemain’s experiment there were four different problems and four 
experts tackled all four problems. A further eight experts tackled one prob-
lem each, giving a total of 24 sessions. The categorizations were analyzed in 
various ways including a “topic plot” showing which topic the expert was 
working on throughout the transcript, the number of transitions between 
each pair of topics, the proportion of lines of transcript devoted to each 
topic and a box plot of topic position. One of the main results was that even 
though the sessions only lasted an hour, the experts spent a considerable 
proportion of the time on all topics other than implementation, with a lot 
of alternation between the different topics. In particular, structure (essen-
tially conceptual modeling) was often followed by assessment (essentially 
verification and validation) and assessment was often followed by struc-
ture. In other words, the experts would tend to develop an aspect of the 
conceptual model, then evaluate it and then often revise the conceptual 
model based on this evaluation. Recently, Willemain and Powell carried 
out a similar experiment using novice modelers (Powell and Willemain 
2007, Willemain and Powell 2007). They identified five main ways in which 
the novices fell short of what they considered to be good modeling practice, 
which were overreliance on data, taking shortcuts, insufficient use of vari-
ables and relationships, ineffective self-regulation, and overuse of brain-
storming. In his earlier work, Willemain (1994) also carried out a survey 
of the 12 experts in his experiment, which provided revealing insights on 
their modeling styles and their views on the ideal qualities of modelers, 
models, and clients.
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Conceptual modeling is often thought of as a skill that improves with 
experience. One way for all modelers, but particularly novice modelers, to 
get better at conceptual modeling is therefore to draw on the experience of 
experts. Knowledge of what both expert and novice modelers actually do 
in practice is also an essential foundation for conceptual modeling research 
(Brooks 2007). However, apart from the work just described, there is a lack 
of empirical studies or data in the literature on how modelers develop con-
ceptual models and on how conceptual modeling relates to the other mod-
eling topics. This chapter describes a study to collect and analyze data on 
this process for an expert and several novice groups tackling real problems. 
The results are discussed and the lessons learnt and possible future work 
outlined.

3.2 Study Objective

The objective of this study was to improve the understanding of the model-
ing process followed in practice by different modelers, focusing particularly 
on conceptual modeling. The general approach follows that of Willemain 
(1995) in collecting data on the topics worked on during the modeling pro-
cess. However, here data were collected throughout a real project for an expert 
and nine groups of novices. The study therefore differs from Willemain’s in 
four main ways: first, the projects are all simulation projects; second, they are 
real projects; third, data were collected for the whole project rather than just 
the initial stage; and fourth, groups of novices as well as an expert were fol-
lowed. In fact, moving to real-life projects, looking at novices and looking at 
groups of modelers were all future experiments suggested by Willemain.

3.3 Data Collection

3.3.1 expert Project Data Collection

The first project used in the study was conducted by an expert. The expert 
holds a master’s degree in operational research and prior to the study had 
4 years of modeling and simulation experience in a variety of application 
fields, including manufacturing, military, and health care. The project was 
carried out part-time by the expert over a period of 10 weeks and involved 
modeling a call center to improve the efficiency of staff usage. The simulation 
software used was Micro Saint Sharp (Alion MA&D Operation, Colorado, 
US), which was selected by the client. 
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The expert was asked to record the total number of hours spent each week 
on different modeling topics. There was a desire to compare these results 
with those of Willemain (1995) and so Willemain’s paper was used as a basis. 
The expert preferred to use one of the alternative list of topics (from Hillier 
and Lieberman 1967) given in Willemain as follows (with the matching topic 
according to Willemain given in brackets): Formulating the problem (context), 
constructing a mathematical model (structure), deriving a solution (realiza-
tion), testing the model and solution (assessment), establishing controls over 
solution (implementation), and implementing the solution (implementation). 
Each week, the expert recorded the number of hours spent on each of these 
topics.

The expert modeler was also interviewed each week and asked whether 
and how the conceptual model had changed during the week and, if there 
had been a change, about the process and reasons for changing the model. 
General issues, for instance, the main task of the week and whether working 
on one topic influenced the others were also discussed.

3.3.2 Novice Projects Data Collection

Data were obtained for nine Lancaster University (UK) student group 
projects in two phases. Data for six projects were collected in phase 1 in 
2005 and data for a further three projects were collected in phase 2 in 2006. 
All projects lasted for about 12 weeks. In phase 1, two of the groups were 
from the simulation module on the master’s course in OR and the other 
four were from the undergraduate simulation course. In phase 2, all three 
projects were from the undergraduate simulation course. The undergrad-
uate students were in their second or third years in various departments 
in the Management School. They had little programming and simulation 
modeling experience prior to the course. The backgrounds for the mas-
ter’s students varied depending on their first degree subjects and previ-
ous work experience. Some had programming and modeling experience, 
but in general, their prior knowledge of simulation was limited. As the 
main assessment for both courses, the students were required to find a 
suitable project on a real system (typically from around the  university 
campus) and carry out a complete simulation project. Therefore, although 
the projects are modeling a real problem there is no external client as 
such, although the projects are done with the cooperation of the external 
company if there is one. The master’s groups had three students, while 
the undergraduate groups had five students. The educational  version of 
the simulation software package WITNESS (Lanner Group Ltd., Redditch, 
UK) was used for all projects. Table 3.1 shows the systems that were 
modeled.

In the phase 1 study, weekly questionnaires were handed out to each 
group before the project started. Each group was asked to record the total 
hours spent on the different topics every day during the week, as well as 
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whether the conceptual model had changed during the week. In this case, 
a much more detailed list of topics was provided than the ones used by 
Willemain (1995) so as to obtain more detailed data and to reduce the amount 
of interpretation required by the students. In the subsequent analysis, the 
topics were combined into our own preferred list of simulation tasks. The 
topics were as follows (with the topic from our list in parentheses): identify 
alternative potential projects (problem structuring), contact/interview with 
the client (problem structuring), observe the system (problem structuring), 
discuss with experts (problem structuring), set project objectives (problem 
structuring), decide the model structure (conceptual modeling), model cod-
ing (model coding), collect data for the model (data collection and analysis), 
parameter estimation and distribution fitting (data collection and analysis), 
white box validation (verification and validation), black box validation (veri-
fication and validation), verification (verification and validation), experiment 
with the model and analyze the result (experimentation), and report writing 
(report writing).

The same data were collected in phase 2 but in an improved way. The 
limitation of the method used in phase 1 is that the reliability of the data 
depended on the accuracy of the students in recording the time spent and 
also on how well they were able to match their tasks against the categories 
provided. Also data were only recorded on a daily basis. To overcome these 
drawbacks, in the phase 2 studies, the researcher (Wang Wang) sat in on 
most of the student group meetings, observed their behavior and recorded 
the relevant time herself in hourly intervals. Where group members con-
ducted individual work outside the meetings, they reported to the researcher 
on what task they worked on and the time spent on that task. In addition, the 
updated computer model was saved at the end of each group meeting so that 
the changes to the model could be tracked. Collecting data in this way gives 
more confidence in the reliability of the data. In both studies the hours were 
not adjusted for the number of people doing each task because of the diffi-
culty in assessing the extra effort this represents. For example, two students 
working together on coding the model for two hours was recorded as two 
hours (rather than four).

TAble 3.1

Systems Modeled in the Novice Projects

Phase Coursea

No. 
Projects Systems Modeled

1 UG 4 Food takeaway, post office, coffee shop, 
Library book loan service points

1 PG 2 Restaurant, traffic crossing
2 UG 3 Convenience store, petrol station, 

Library photocopiers

a UG = undergraduate, PG = postgraduate



62 Conceptual Modeling for Discrete-Event Simulation

3.4 Results

3.4.1 r esults for expert

The analysis of the data follows some of Willemain’s analysis by calcu-
lating the relative weights of the different topics, and showing a graphi-
cal representation of the topics over time. Figures 3.1 and 3.2 show these 
results for the expert project, while Figure 3.3 shows the average weight 
given to each topic in the 24 sessions in Willemain’s experiment measured 
in number of lines in the transcripts. As Figure 3.1 shows, the expert spent 
most time on modeling and testing the model. No time was spent by the 
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Fig ur e 3.2
Timeline plot for expert project. The topics are as in Figure 3.1. The data were collected weekly 
over 10 weeks, which are shown by the vertical dashed lines.
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Proportion of time spent on each topic in the expert project. The topics are (with the matching 
Willemain topic in parentheses): P (C) = Formulating the problem (context), M (S) = construct-
ing a mathematical model (structure), S (R) = deriving a solution (realization), T (A) = testing 
the model and solution (assessment), E (I) = establishing controls over solution (implementa-
tion), I (I) = implementing the solution (implementation).
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expert implementing the solution since this was carried out subsequently 
by the client.

The timeline plot (Figure 3.2) shows the topics worked on during the 
project. The expert project data were obtained on a weekly basis over the 
10-week period of the project. Only the total number of hours spent on 
the topics in each week were recorded. Since the precise timings during the 
week are not known the plot spreads the topics evenly during each week. 
If more than one topic was worked on during the week then this is shown 
by the bars not being full height in the plot (a full height bar would reach 
the horizontal line above on the plot). For example, in the second week the 
expert spent a total of 10 hours working on the project, which consisted of 
6 hours on formulating the problem (P) and 4 hours on constructing the 
model (M). This is shown in the plot by the heights of the bars for P and M 
being, respectively, 60 and 40% of a full height bar for each hour in a 10-hour 
period (hours 4–13). This data collection was less detailed than Willemain’s 
data obtained in a laboratory setting, where the protocol recorded what 
was happening all the time. One consequence is that where more than 
one topic took place during the week then the order and the interaction 
between the topics is not known. There could have been a lot of switching 
between the topics during the week or, on the other hand, the topics could 
have been worked on completely separately one after the other. This pre-
vented a detailed analysis of the switching between topics as carried out by 
Willemain. Nevertheless, the topic plots still give useful information about 
the positions and sequence of the topics throughout the project. In particu-
lar, the extensive overlap between the topics does indicate a considerable 
amount of alternation between the topics rather than a linear process. In 
general, the topics were in the anticipated order with topics higher up on 
the y-axis expected to be later.
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Percentage of lines devoted to each topic in Willemain’s 24 experiments (Redrawn from 
Willemain, T.R., Operations Research, 43(6), 916–932, 1995.)
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A comparison of Figures 3.1 and 3.3 show a reasonably similar split 
between the topics. This perhaps indicates that the relative time spent by 
the expert on the different topics over the course of the whole project was 
similar to that spent by the experts in the initial hour of Willemain’s experi-
ment. However, this comparison should be treated with caution because it 
depends on how similar the allocation process was. In particular, an alterna-
tive list was used for the expert project and this may not match up perfectly 
with Willemain’s categories. With hindsight, neither list gives a sufficiently 
detailed list of topics for a simulation project and the data collected for the 
novice projects is more informative in this respect. 

3.4.2 r esults for Novices

The proportion of time spent on the topics for the novice projects in phase 1 
and phase 2, respectively, are shown in Figures 3.4 and 3.5. In each case, the 
percentage of time on each topic was calculated for each project and then 
the project values were averaged. The pattern is reasonably similar for phase 
1 and phase 2, which gives some additional confidence that the results for 
phase 1 are reliable even though they were recorded by the students them-
selves. A considerable amount of time was spent on data collection and report 
writing. Conceptual modeling received relatively little attention particularly 
in the phase 2 projects.

Observation by the researcher of the process for the phase 2 projects gave 
additional insight into the results. The high proportion of time spent on 
experimentation was partly due to the technical problems they experienced 
or mistakes they made. For example, one group did all the experimentation 
twice as they forgot to consider the warm-up period (the initial transient 
period before the model reaches the realistic conditions in the system) at 
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Proportion of time spent on the topics in the six novice projects in phase 1. PS = problem struc-
turing, CM = conceptual modeling, DC = data collection, MC = model coding, VV = verifica-
tion and validation, EX = experimentation, RW = report writing.
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the beginning. Another group had little understanding about warm-up and, 
as a result, they had to go through the lecture notes first before they could 
perform this task. Generally with these projects the groups have to collect 
their own data, which is the reason for the high proportion of time on data 
collection.

The timeline plot shown in Figure 3.6 is the same general format as 
Figure 3.2. As already explained, most of the data for the phase 2 novice 
projects was obtained by observation of the group by the researcher and was 
recorded on an hourly basis. The overlapping topics in hours 1, 13, and 15 are 
times when both topics were worked on during the hour. However, some of 
the work was done individually by the group members and the total time 
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Timeline plot for one of the phase 2 novice projects. Topics are as in Figure 3.4.
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spent was just reported to the researcher. This data are therefore less detailed 
with the precise interaction between the topics not known. The period from 
hours 17 to 25 was not observed and instead the group members reported 
spending 3 hours each on verification and validation, experimentation and 
report writing. As with the expert plot (Figure 3.2), such data are shown by 
spreading the topics evenly over the total period.

The pattern of the plot in Figure 3.6 is a fairly linear process. The novices 
tended to complete one topic then move onto the next with not much overlap 
and with very little returning to a previous topic. Most of the novice projects 
were similar in this respect. Although the topic categories are different, this 
is a quite different pattern to the expert (Figure 3.2) and also to the pattern in 
Willemain’s (1995) experiments. Figure 3.2 shows much more overlap of top-
ics although, as previously explained, the precise pattern within each week 
for the expert is not known. The overlap of the topics over several weeks 
shows that there was more switching between topics for the expert than the 
novices. Since there may also have been several iterations within each week 
for the expert, this difference may be even more marked than is shown on 
the graphs. Another comparison that can be made is that the expert started 
model testing (verification and validation) much earlier than the novice 
 modelers who tended to leave it until after model coding was completed. As 
for the expert project, the average position of the topics for the novices was 
in the expected order with topics higher up the y-axis on Figure 3.6 expected 
to be later.

3.4.3 Further Findings and Analysis

Upon the completion of both the expert and novice studies, a further discus-
sion took place with the expert to try and reclassify the topics to enable bet-
ter comparison with the novice projects. Using our list of topics the expert 
decomposed each original topic and provided its approximate weighting 
(for example, establishing controls over solution = 1/4 verification and vali-
dation + 3/4 experimentation). This enabled a revised weight breakdown to 
be produced although not a revised timeline. However, discussion with the 
expert indicated that the general pattern of task overlapping would be simi-
lar. It should be noted that this reallocation took place more than 12 months 
after the project finished and therefore the values should be regarded as 
approximate. This revised weighting is shown in Figure 3.7. Again this shows 
that the data are very different to that of the novice projects (Figures 3.4 and 
3.5). With the expert, the topic that received the most attention was concep-
tual modeling, and much more time was spent on verification and validation 
than experimentation. In general, it may be that experienced modelers have 
a greater appreciation than novices of the importance and benefits of both 
conceptual modeling and verification and validation, perhaps by learning 
from problems on previous projects. On the other hand, the lower attention 
on conceptual modeling and validation by the novices could be because the 
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systems they modeled were so simple that these tasks were straightforward 
to perform. To investigate this further, the novice project reports were stud-
ied. This showed poor performance on validation and verification with this 
task receiving the lowest marks on average in the assessment of the reports. 
For example, two groups failed to distinguish between white box validation 
and verification and out of nine projects investigated, only two groups per-
formed black box validation properly. Sometimes this was due to a lack of 
planning. For instance, two groups didn’t consider collecting data for valida-
tion when planning data collection.

The conceptual modeling process can be considered in more detail based 
on the discussions with the expert and observations of the phase 2 novice 
groups. The expert developed the conceptual model at the beginning of 
the project and documented it in a system flow diagram, which guided the 
construction of the computer model. However, the novice groups devoted 
little time to understanding how the systems actually worked. They did 
discuss the process of the system, but rarely drew a diagram. After iden-
tifying the project they tended to go straight to collecting data with little 
prior planning or consideration of the model structure. As a result, some 
of the data collected proved not to be useful. This is inefficient particu-
larly as data collection is time consuming. Sometimes further discussions 
on the system process occurred at the model coding stage with concep-
tual modeling and coding taking place together. Some groups only docu-
mented the conceptual model at the end in order to include a diagram in 
the report.

In the expert study and both novice studies, the subjects were asked to 
note any changes in the conceptual model each week and the reason. For the 
expert project, there was one significant conceptual model alteration toward 
the end of the project. This involved a scope reduction due to the fact that 
the collected data were not sufficient to support the model built. In one of the 
novice groups, one student left in the middle of the project causing a change 
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of project application to make the problem easier to model. Another group 
attempted to increase the scope from modeling the busy hours of a grocery 
store to modeling the whole period of the business hours, but gave up after 
experiencing some difficulties in finding out the right distribution of data 
and transferring it into the computer model. The other novice groups did not 
adjust the conceptual models after the coding stage.

3.5 Discussion and Conclusions

This study was designed to provide information to improve the understand-
ing of conceptual modeling. The time spent on different topics had a quite 
different pattern between the expert project and the nine novice projects. 
The expert project had much more overlapping of the topics and had a higher 
proportion of time on conceptual modeling and verification and validation. 
The novice projects had much more time allocated to data collection because 
they had to collect the data themselves. One of the difficulties with research 
on real projects is that all the projects are different. Generally, the student 
projects are fairly simple problems and so the differences between the expert 
and novice data could be evidence of different working styles or it could be 
due the greater complexity of the expert project.

Carrying out this type of research is difficult and a number of prob-
lems were encountered. Following (shadowing) experts in real projects 
has practical difficulties, such as project confidentiality, and finding the 
projects with right size. Obtaining data in this way also requires a sig-
nificant time commitment. The number of projects that could be followed 
was therefore limited. Following real projects also inevitably limits the 
analysis compared to an artificial laboratory experiment in that all the 
projects were different. For example, Willemain (1995) was able to compare 
different modelers tackling the same problem and some of the modelers 
tackling different problems, to try and identify any modeler and problem 
effects. With hindsight, using more topic categories for the expert project 
would have also provided more detailed data. A possible ideal approach 
in the future would be to follow a real small-scale consultancy project, and 
then bring it to the classroom to be tackled by novices. However finding 
an appropriate project is likely to be very difficult. A different approach 
would be to use a questionnaire to obtain data from a larger sample size 
of experts on their perceptions of their modeling projects. We have carried 
out such a questionnaire and some of the results are reported in Wang and 
Brooks (2007).

Obtaining this sort of information about conceptual modeling and the 
modeling process is an important step toward a better understanding of the 
key aspects of successful modeling practice. In the long term, it is hoped 
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that further research in this area will improve the success of simulation 
and OR projects, and that the information can help in the training of novice 
modelers.
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4
A Framework for Simulation 
Conceptual Modeling

Stewart Robinson

4.1 Introduction

Chapter 1 set out the foundations of conceptual modeling for simulation. 
It provided an understanding of current thinking on the topic and gave a 
definition of a conceptual model. It also discussed the requirements for a 
conceptual model: validity, credibility, utility, and feasibility (Chapter 1, 
 Section 5). Such discussions are useful for informing a simulation modeling 
project, but they do not answer the question of how to develop a conceptual 
model. That is the question addressed in this chapter whose key contribution 
is to provide a framework for developing conceptual models for simulations 
of operations systems (Wild 2002). This is something that is largely missing 
from the current literature on simulation.
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The framework that is presented provides a sequence of activities required 
for the development of a conceptual model. For each of these activities there 
is a set of guidelines and methods for performing them. Some might argue 
that the approach outlined does not go far enough to be described as a true 
framework, which would require a much more detailed and structured 
approach. The structure of the proposed framework, however, is found in 
the ordered sequence of activities and the guidelines and methods for per-
forming each activity. These go beyond simple guidelines or lists of do’s and 
don’ts for modeling and hence, in the author’s view, present a framework for 
conceptual modeling. 

This chapter describes the framework and the guidelines and methods for 
performing each activity within the framework. It concludes with a discus-
sion on how data requirements can be identified and how the model can be 
assessed against the four requirements of a conceptual model ( Chapter 1, 
Section 5). The framework is illustrated with the example of the Ford Motor 
Company (Ford) engine assembly plant model described in Chapter 1 
( Section 2). 

The framework presented here has been developed based on the author’s 
experience, of nearly 20 years, with developing and using simulation mod-
els of operations systems, mainly manufacturing and service systems. By 
reflecting on the cognitive processes involved in reaching decisions about 
the scope and level of detail of models developed, a set of guidelines and 
methods have been devised. The framework aims to be useful for both 
novice and more expert modelers alike. For novice modelers it provides a 
guide on how to make decisions about the nature of a simulation model 
that is to be developed for a specific project. For more experienced model-
ers, it provides a greater sense of discipline to the conceptual modeling 
activity. It is hoped that by providing more discipline, greater creativity 
can be encouraged as the more basic tasks are formalized (Ferguson et al. 
1997). At present there appears to be very little discipline in conceptual 
modeling. Pidd (1999), for instance, sees modeling as a process of muddling 
through.

Two other groups may benefit from this framework. Teachers may find it 
useful for giving their students a basis on which to learn about conceptual 
modeling. Researchers may use the framework as a basis for further and 
much needed research in this important area of simulation modeling.

4.2 A Framework for Developing a Conceptual Model

Figure 4.1 provides an overview of the conceptual modeling framework 
that is described in more detail below. In this framework conceptual 
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 modeling consists of five key activities that are performed roughly in this 
order:

Understanding the problem situation•	
Determining the modeling and general project objectives•	
Identifying the model outputs (responses)•	
Identifying the model inputs (experimental factors)•	
Determining the model content (scope and level of detail), identify-•	
ing any assumptions and simplifications

Starting with an understanding of the problem situation, a set of model-
ing and general project objectives are determined. These objectives then 
drive the derivation of the conceptual model, first by defining the outputs 
(responses) of the model, then the inputs (experimental factors), and finally 
the model content in terms of its scope and level of detail. Assumptions and 
simplifications are identified throughout this process.

The order of these activities is not strict as it is expected that there will 
be much repetition and iteration between them. For instance, the prob-
lem situation is rarely static and so continual revision to the conceptual 
model is required. Further to this, conceptual modeling is not performed 
in isolation, but is part of simulation study that itself is repetitive and itera-
tive in nature, for instance, work carried out during model coding and 
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A framework for designing the conceptual model. (Adapted from Robinson, S., Simulation: The 
Practice of Model Development and Use, Wiley, Chichester, UK, 2004. With permission.)
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experimentation may both lead to alterations in the conceptual model. 
(Indeed, the simulation study is normally just a part of a wider project that 
will also involve repetition and iteration.) For the purposes of explaining 
each of the conceptual modeling activities, however, it is useful to separate 
them and describe them in the order in which they would generally prog-
ress. This is the approach used below. Meanwhile, the reader is reminded 
to constantly bear in mind the repetitive and iterative nature of the model-
ing process.

Within this framework the purpose of the model outputs is seen as two-
fold: first, to determine whether the modeling objectives are being met and 
second, if the objectives are not being met, to help determine why. As such, 
the objectives are central to determining the outputs. The experimental fac-
tors are also determined by the modeling objectives. Attempts are made to 
achieve the modeling objectives by changing the values of the experimental 
factors. Once the model inputs and outputs are determined, the content of 
the conceptual model must be designed in such a way as to ensure that it can 
accept the inputs and provide the required outputs, with sufficient accuracy 
(accuracy is a measure of the correspondence of the model outputs with the 
real world). Model content consists of two elements. The scope is the bound-
ary of the model in terms of its breadth. The level of detail is the boundary of 
the model in terms of the depth of detail modeled for each component within 
the scope. Throughout the process of developing the conceptual model vari-
ous assumptions and simplifications are made. These should be explicitly 
recorded alongside the detail of the conceptual model.

It should be apparent from the description above that the modeling objec-
tives are central to the conceptual modeling framework described here. It is 
for this reason that determining the modeling objectives is described as part 
of the conceptual modeling process. Since the understanding of the problem 
situation is central to the formation of the modeling objectives, it also is con-
sidered to be part of the conceptual modeling process, although not formally 
part of the conceptual model (Figure 4.1).

There now follows a more detailed description of the five activities out-
lined above. Following this, there is a discussion on the identification of data 
requirements and checking whether the model meets the four requirements 
of a conceptual model.

4.3 Understanding the Problem Situation

The requirement for a simulation model should always be driven by the need 
to improve a problem situation. (Here the term problem situation is borrowed 
from Checkland (1981, p. 316): “A nexus of real-world events and ideas which 
at least one person perceives as problematic.”) Indeed, a simulation study 
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would normally be commissioned because the clients perceive a problem 
and simulation as an aid to addressing that problem. As such, the starting 
point in any simulation study and, therefore, conceptual modeling for simu-
lation, is to develop an understanding of that problem situation. 

It is obviously necessary for the modeler to develop a good understand-
ing of the problem situation if he/she is to develop a model that adequately 
describes the real world. The approach to this activity depends in large mea-
sure on the extent to which the clients and subject matter experts (domain 
experts) understand, and are able to explain, the problem situation. In this 
respect, there are three possible scenarios: 

The problem situation is clearly understood and expressed. •	
The problem situation is apparently well understood and expressed, •	
although actually it is not. 
The problem situation is neither well understood nor expressed. •	

In the first case, developing an understanding of the problem situation only 
requires discussion and careful note-taking. It is also useful for the modeler 
to confirm his/her understanding by providing descriptions of the problem 
situation for the clients. This acts as a means of validating the conceptual 
model as it is developed. 

Unfortunately, the first scenario rarely exists. Very often, the clients and 
domain experts may believe they understand a problem situation and they 
may express that understanding, but further investigation reveals gaps and 
discontinuities in their knowledge. This can occur because they do not have 
a good grasp of cause and effect within the problem domain; hence the need 
for simulation! In a recent study of a telephone helpline, understaffing (cause) 
was being blamed for the poor level of customer service (effect). The simula-
tion revealed, however, that extra staff had a negligible effect and that the 
business process was to blame. 

Apart from having a poor grasp of the problem situation, there is the dif-
ficulty of each client and domain expert having a different view of the prob-
lem (Weltanschauungen [Checkland 1981]). In a recent study of maintenance 
operators there were as many explanations of working practice as there were 
staff. This was further confounded when observations of the operators at 
work did not tie in with any of their explanations. This problem should not 
be a surprise, especially when dealing with systems involving human activ-
ity where the vagaries of human behavior impact upon the performance of 
the system.

It is apparent that although on the face of it the modeler’s role is to learn 
from the clients and domain experts in order to develop an understand-
ing of the problem situation, the modeler has to play a much more active 
role. Speaking with the right people and asking searching questions is vital 
to developing this understanding. The modeler should also be willing to 
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suggest alternative interpretations with a view to unearthing new ways of 
perceiving the problem situation. Such discussions might be carried out face-
to-face in meetings and workshops, or remotely by telephone, email or web 
conference.

In the third scenario, where the problem situation is neither well under-
stood nor expressed, the job of the modeler becomes all the more difficult. 
In such situations, there is opportunity to adopt formal problem structur-
ing methods, such as, soft systems methodology (Checkland 1981), cognitive 
mapping (Eden and Ackermann 2001), and causal loop diagrams (Sterman 
2000). Lehaney and Paul (1996) and Kotiadis (2007) are both examples of the 
use of soft systems methodology for problem structuring prior to the devel-
opment of a simulation. Meanwhile, Balci and Nance (1985) describe a meth-
odology for problem formulation in simulation. 

As an alternative to the formal problem structuring methods listed above, 
some have recommended the use of simulation itself as a problem structur-
ing approach (Hodges 1991, Robinson 2001, Baldwin et al. 2004). The idea is 
not so much to develop an accurate model of the system under investiga-
tion, but to use the model as a means for debating and developing a shared 
understanding of the problem situation. Validity is measured in terms of the 
usefulness of the model in promoting this debate, rather than its accuracy. 
This idea has been made more feasible with the advent of modern visual 
interactive modeling systems.

During the process of understanding the problem situation, areas of 
limited knowledge and understanding will arise. As a result, assumptions 
about these areas have to be made. These assumptions should be recorded 
and documented. Indeed, throughout the simulation study areas of lim-
ited understanding will be discovered and further assumptions will be 
made.

The problem situation and the understanding of it are not static. Both will 
change as the simulation study progresses. The simulation model itself acts 
as a catalyst for this change because the information required to develop 
it almost always provides a focus for clarifying and developing a deeper 
understanding of the real world system that is being modeled. Change is also 
the result of influences external to the simulation, for instance, staff changes 
and budgetary pressures within an organization. Such continuous change 
acts to increase the level of iteration between modeling processes across a 
simulation study, with adjustments to the conceptual model being required 
as new facets of the problem situation emerge.

The Ford Motor Company example: u nderstanding 
the Problem Situation 

In Chapter 1 (Section 2), the problem situation at the Ford Engine Assembly plant 
is described. Two models were developed: one for determining the throughput 
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of the plant, the other for investigating the scheduling of key components. In 
order to illustrate the conceptual modeling framework, the development of a 
conceptual model for the throughput problem is described. Details of the frame-
work as applied to the scheduling problem are available on request from the 
author.

The reader is referred to the description of the problem situation at Ford in 
Chapter 1. In this case there was a clear understanding of the problem among 
the clients and domain experts; they were uncertain as to whether the required 
throughput from the production facility as designed could be achieved.

4.4 Determining the Modeling Objectives

Key to the development of an appropriate model are the modeling objec-
tives. They drive all aspects of the modeling process providing the means by 
which the nature of the model is determined, the reference point for model 
validation, the guide for experimentation, and a metric for judging the suc-
cess of the study. The following sections show how the modeling objectives 
are used to develop the conceptual model. 

Before concentrating on specific modeling objectives, it is useful to identify 
the overall aims of the organization. The aims are not so much expressed in 
terms of what the model should achieve, but what the organization hopes to 
achieve. Once the organizational aims have been determined, it is possible to 
start to identify how simulation modeling might contribute to these. In most 
cases, of course, the simulation model will probably only be able to contrib-
ute to a subset of the organization’s aims. This subset is expressed through 
the modeling objectives.

The purpose of a simulation study should never be the development of a 
model. If it were, then once the model has been developed the simulation 
study would be complete. Albeit that something would have been learnt 
from the development of the model, there would be no need for experimen-
tation with alternative scenarios to identify potential improvements. This 
may seem obvious, but it is surprising how often clients are motivated by 
the desire for a model and not for the learning that can be gained from the 
model. The objectives should always be expressed in terms of what can be 
achieved from the development and use of the model. As such, a useful ques-
tion to ask when forming the objectives is “by the end of this study what do 
you hope to achieve?” 

Objectives can be expressed in terms of three components:

Achievement•	 : what the clients hope to achieve, e.g., increase through-
put, reduce cost, improve customer service, improve understanding 
of the system 
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Performance•	 : measures of performance where applicable, e.g., increase 
throughput by 10%, reduce cost by $10,000
Constraints•	 : the constraints within which the clients (modeler) must 
work, e.g., budget, design options, available space

The clients may not be able to provide a full set of objectives. This can 
be the result of either their limited understanding of the problem situation, 
or their limited understanding of simulation and what it can provide for 
them. The latter might lead to the opposite problem, expecting too much 
from the simulation work. Whichever, the modeler should spend time edu-
cating the client about the potential for simulation, what it can and cannot 
do. The modeler should also be willing to suggest additional objectives 
as well as to redefine and eliminate the objectives suggested by the cli-
ents. In this way the modeler is able to manage the expectations of the 
clients, aiming to set them at a realistic level. Unfulfilled expectations are a 
major source of dissatisfaction among clients in simulation modeling work 
(Robinson 1998, Robinson and Pidd 1998). 

As discussed above, the problem situation and the understanding of 
it are not static. So too, the modeling objectives are subject to change. 
Added to this, as the clients’ understanding of the potential of simula-
tion improves, as it inevitably does during the course of the study, so 
their requirements and expectations will also change. This only adds to 
the need for iteration between the activities in a simulation study, with 
changes to the objectives affecting the design of the model, the experimen-
tation and the outcomes of the project. The two-way arrow in Figure 4.1 
aims to signify the iteration between the problem situation and the mod-
eling objectives.

Determining the General Project Objectives

The modeling objectives are not the only concern when designing a concep-
tual model. The modeler should also be aware of the general project objec-
tives. Timescale is particularly important. If time is limited, the modeler may 
be forced into a more conservative model design. This would help reduce 
model development time as well as lessen the requirements for data collec-
tion and analysis. It would also quicken the run-speed of the model, reduc-
ing the time required for experimentation. If the problem situation is such 
that it requires a large scale model, the modeler may consider the use of a 
distributed simulation running in parallel on a number of computers. This 
should improve the run-speed of the simulation, but it may increase the 
development time.

The modeler should also clarify the nature of the model and its use since 
this will impact on the conceptual model design. Consideration should be 
given to some or all of these:
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Flexibility•	 : the more it is envisaged that a model will be changed dur-
ing (and after) a study, the greater the flexibility required.
Run-Speed•	 : particularly important if many experiments need to be 
performed with the model.
Visual Display•	 : whether a simple schematic (or indeed, no animated 
display) up to a 3-D animation is required.
Ease-of-Use•	 : ease of interaction with the model should be appropriate 
for the intended users.
Model/Component Reuse•	 : proper conceptual model design can aid 
model and component reuse (Balci et al. 2008).

The Ford Motor Company example: Objectives

Figure 4.2 gives the modeling and general project objectives for the Ford through-
put model.

The overall aim is to achieve a throughput of X units per day from the assembly line.
(Note: the value of X cannot be given for reasons of confidentiality.)
Modeling objectives
• To determine the number of platens required to achieve a throughput of X units per

day, or
• To identify the need for additional storage (and platens) required to achieve a

throughput of X units per day.

The second objective only needs be considered if throughput cannot be achieved by
increasing platens only.
General project objectives 
• Time-scale: 30 working days.
• Flexibility: limited level required since extensive model changes beyond changes to

the data are not expected.
• Run-speed: many experiments may be required and so a reasonable run-speed is

important, but not at the forfeit of accuracy.
• Visual display: simple 2D animation. (The model is largely required for performing

experiments and obtaining results, communication through detailed graphics is not a
major need especially as the client is familiar with simulation.  Therefore, the level of
visual display needs only to enable effective model testing and aid the diagnosis of
problems during experimentation.)

• Ease-of-use: simple interactive features will suffice since the model is for use by the
modeller.

Organizational aim

Fig ur e 4.2
The Ford throughput model example: Modeling and general project objectives.
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4.5 Identifying the Model Outputs (Responses)

Once the objectives are known, the next stages are to identify the outputs 
and inputs to the model, depicted as the responses and experimental fac-
tors in Figure 4.1. It is much easier to start by giving consideration to these, 
than to the content of the model (Little 1994). It is also important to know the 
responses and experimental factors when designing the content of the con-
ceptual model since these are the primary outputs and inputs that the model 
must provide and receive, respectively. In general it does not matter in which 
order the responses and experimental factors are identified. The responses 
are placed first because it is probably a little easier to think initially in terms 
of what the clients want from a model rather than what changes they might 
make while experimenting with the model.

Identification of the appropriate responses does not generally provide a 
major challenge. The responses have two purposes:

To identify whether the modeling objectives have been achieved•	
To point to the reasons why the objectives are not being achieved, if •	
they are not

In the first case, the responses can normally be identified directly from 
the statement of the modeling objectives. For example, if the objective is to 
increase throughput, then it is obvious that one of the responses needs to be 
the throughput. For the second case, identification is a little more difficult, 
but appropriate responses can be identified by a mix of the modeler’s past 
experience, the clients’ understanding and the knowledge of the domain 
experts. Taking the throughput example, reports on machine and resource 
utilization and buffer/work-in-progress levels at various points in the model 
would be useful for helping to identify potential bottlenecks. Quade (1988) 
provides a useful discussion on identifying appropriate measures for the 
attainment of objectives.

Once the required responses have been identified, consideration should 
also be given to how the information is reported; this might impact on 
the required content of the model. Options are numerical data (e.g., mean, 
maximum, minimum, standard deviation) or graphical reports (e.g., time-
series, bar charts, Gantt charts, pie charts). These can be determined through 
consultation between the simulation modeler, clients and domain experts. 
Consideration should also be given to the requirements for model use as 
outlined in the general project objectives.

The Ford Motor Company example: Determining the r esponses

Figure 4.3 shows the responses identified for the Ford throughput model. Daily 
throughput is selected as the response to determine the achievement of the 
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objectives because it is the measure of performance identified in the mod-
eling objectives. The three reports identified will enable an analysis of the 
distribution of daily throughput and its behavior over time. Utilization reports 
are selected as the means for determining the reasons for failing to meet the 
modeling objectives. This is because the level of disturbance caused by break-
downs (expected to be a key reason for failure to meet throughput) can be 
identified by the percentage of time each machine is broken, as well as, in 
part, the time machines spend idle and blocked. Further to this, any system 
bottlenecks and a shortage or surplus of platens can be identified by idle and 
blocked machines.

4.6 Identifying the Model Inputs (Experimental Factors)

The experimental factors are the model data that can be changed in order 
to achieve the modeling objectives. They may either be quantitative data 
(e.g., number of staff or speed of service) or qualitative (e.g., changes to 
rules or the model structure). Using this definition, the experimental factors 
are a limited subset of the general input data that are required for model 
realization.

As with the responses, identification of the experimental factors is driven 
by the modeling objectives. The experimental factors are the means by 
which it is proposed that the modeling objectives will be achieved. They 
may be explicitly expressed in the modeling objectives, for instance, “to 
obtain a 10% improvement in customer service by developing effective staff 
rosters,” or “to increase throughput … by changing the production sched-
ule.” Alternatively, they can be obtained by asking the clients and domain 
experts how they intend to bring about the desired improvement to the real 
system. The modeler can also provide input to this discussion based on his/
her experience with simulation. Altogether, this might lead to a substantial 
list of factors. 

Outputs (to determine achievement of objectives)
• Time-series of daily throughput 
• Bar chart of daily throughput 
• Mean, standard deviation, minimum and maximum daily throughput 

Outputs (to determine reasons for failure to meet objectives) 
• Percentage machine utilization: idle, working, blocked, and broken

Fig ur e 4.3
The Ford throughput model example: Responses.
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Although the general expectation is that the clients will have control over 
the experimental factors, this is not always the case. Sometimes, it is useful to 
experiment with factors over which there is little or no control, for example, 
the customer arrival rate. Such experimentation can aid understanding of 
the system or help plan for future events.

Where the objective of the model is, at least in part, to improve understand-
ing, then the list of experimental factors may be a more subtle. The modeler 
needs to determine, with the clients and domain experts, what factors might 
be most useful to help improve understanding.

Apart from determining the experimental factors, it is useful to identify 
the range over which the experimental factors might be varied (e.g., the mini-
mum and maximum number of staff on a shift). The simulation model can 
then be designed to accept this range of values, potentially avoiding a more 
complex model that allows for a much wider range of data input. Methods 
of data entry should also be considered, including: direct through the model 
code, model-based menus, data files or third party software (e.g., a spread-
sheet). The requirement depends upon the skills of the intended users of the 
model and the general project objectives.

In the same way that the problem situation and modeling objectives are 
not static, so the experimental factors and responses are subject to change 
as a simulation study progresses. The realization that changing staff ros-
ters do not achieve the required level of performance may lead to the 
identification of alternative proposals and, hence, new experimental fac-
tors. During experimentation, the need for additional reports may become 
apparent. All this serves to emphasize the iterative nature of the modeling 
process.

The Ford Motor Company example: Determining 
the experimental Factors

Figure 4.4 shows the experimental factors identified for the Ford through-
put model. Both of these factors are derived directly from the modeling 
objectives.

Experimental factors 
• The number of platens (maximum increase 100%)
• The size of the buffers (conveyors) between the operations (maximum increase

of 100%)

Fig ur e 4.4
The Ford throughput model example: Experimental factors.
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4.7 Determining the Model Content: Scope and Level of Detail

The framework separates the identification of the scope of the model from the 
model’s level of detail. These are logically different, the former identifying 
the boundaries of the model, the latter the depth of the model. Procedures 
for selecting the scope and level of detail are described below as well as the 
identification of assumptions and simplifications made during the modeling 
process.

Before making decisions about the scope and level of detail of the proposed 
simulation model, the use of simulation should be questioned. Is simulation 
the right approach for the problem situation? Robinson (2004) discusses the 
prime reasons for the selection of simulation as variability, interconnected-
ness and complexity in the systems being modeled. He also identifies the rel-
evance of discrete-event simulation for modeling queuing systems as a prime 
reason for its choice. Most operations systems can be conceived as queuing 
systems. Along side an understanding of these reasons, the definition of the 
problem situation, the objectives, experimental factors and responses will 
help to inform the decision about whether simulation is the right approach. 

Up to this point, most of the discussion is not specific to conceptual mod-
els for simulation. It is possible that another modeling approach might be 
adopted. It is from this point forward that the conceptual model becomes 
specific to simulation. 

4.7.1 Determining the Model Scope

In general terms, simulation models can be conceived in terms of four types 
of component: entities, active states, dead states and resources (Pidd 2004). 
Here these are referred to as entities, activities, queues and resources, respec-
tively. Examples of each component type are as follows:

Entities:•	  parts in a factory, customers in a service operation, telephone 
calls in a call center, information in a business process, forklift truck 
in a warehouse. 
Activities:•	  machines, service desks, computers 
Queues:•	  conveyor systems, buffers, waiting areas, in-/out-trays, com-
puter storage
Resources:•	  staff, equipment

Unlike the first three components, resources are not modeled individually, 
but simply as countable items. Some substitution is possible between using 
resources and a more detailed approach using individual components. For 
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instance, a machine could be treated as an activity and modeled at some 
level of detail, or it could be modeled as a resource (equipment) that needs to 
be available to support some other activity.

The author’s experience suggests that these four component types are suf-
ficient for most simulations of operations systems; at least those that are dis-
crete in nature. This is largely because they can be conceived as queuing 
systems. Readers may be able to think of additional component types, for 
instance, transporters and elements of continuous processing systems (e.g., 
pipes). The framework can quite easily be extended to include additional 
component types. 

Determining the scope of a model requires the identification of the entities, 
activities, queues and resources that are to be included in the model. The 
question is, how can a modeler make this decision? The following three-step 
approach is suggested.

Step 1: identify the model boundary. The experimental factors and responses 
provide a good starting point for identifying where the edges of the model 
might lie. The need to experiment with interarrival times provides an obvi-
ous entry point into a model. The requirement to report factory throughput 
strongly suggests that the last operation before work exits the factory needs 
to be included in the model. Beyond the experimental factors and responses, 
careful consideration of the system being modeled is important. At this point, 
the knowledge of the clients and domain experts is vital.

Step 2: identify all the components (entities, activities, queues, and 
resources) in the real system that lie within the model boundary. It is of 
particular importance to identify all components that directly connect the 
experimental factors to the responses, for instance, in a fast food restaurant 
the number of service staff (an experimental factor and resource) with wait-
ing time (a response related to a queue). The connection between these is the 
service tasks. This can be thought of as the critical path that must be modeled 
in order to get the most basic representation that connects the experimen-
tal factors with the responses. Apart from direct connections, all intercon-
nections also need to be considered, for the example above this might be 
the supply of food and drink. Some restraint is required in identifying the 
potential components of the model so that clearly irrelevant factors (e.g., in 
the case of a fast food restaurant this might be the cost of food supply) are not 
taken forward for further consideration.

Step 3: assess whether to include/exclude all components identified. For 
each component assess whether it is important to the validity, credibility, 
utility and feasibility of the model. If they are not needed to fulfill any of 
these requirements, then exclude them from the model. Judgments need to 
be made concerning the likely effect of each component on the accuracy of 
the model, and as such its validity. Will removing a component reduce the 
accuracy of a model below its requirement for sufficient accuracy? These 
judgments are, of course, confounded by interaction effects between com-
ponents, for instance, the effect of removing two components may be much 
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greater than the sum of the effects of removing them individually. Past expe-
rience will no doubt help in making such judgments. A cautious approach is 
advised, keeping components in the model where there is some doubt over 
their effect on validity.

Similarly, the effect on credibility also needs to be considered. It may be 
that a component is not particularly important to the accuracy of the model, 
but that its removal would damage the credibility of a model. In this case, it 
should probably be included. Indeed, a wider scope (and more detail) may be 
included in a model than is strictly necessary for validity, simply to increase 
its credibility.

Consideration should be given to the issue of utility. The inclusion of a 
component may significantly increase the complexity of a model or reduce 
its run-speed. Both could reduce the utility of the model. The effect of each 
component on feasibility should also be considered. It may be that the data 
for modeling a component are unlikely to be available, or the complexity 
of modeling a component would mean that the simulation study could not 
meet its timescale.

A careful balance between validity, credibility, utility and feasibility must 
be sought. For a component, where any one (or more) of these is seen as being 
of vital importance, then it should be included in the model. If it appears that 
a component is of little importance to any of these, then it can be excluded. In 
performing Step 3 the model boundary may well become narrower as com-
ponents are excluded from the model. In Zeigler’s (1976) terms, Steps 1 and 2 
are about identifying the base model (at least to the extent that it is known) 
and Step 3 about moving to a lumped model.

In order to work through these three steps, a meeting or sequence of 
meetings could be arranged between the modeler, clients and domain 
experts. This is probably most effective in bringing the differing exper-
tise together rather than holding meetings with smaller groups or relying 
on telephone or electronic media. Step 2 could consist of a brainstorming 
session, in which all parties identify potential model components with-
out debate about the need, or otherwise, to include them. It is expected 
that there will be a number of iterations between the three steps before the 
model scope is agreed.

The discussions about the scope of the model need to be recorded to 
ensure that there is agreement over the decisions that are being made. The 
records also provide documentation for model development, validation, and 
reuse. A simple table format for documenting the model scope is suggested 
(see Table 4.1). The first column provides a list of all the components in the 
model boundary (Steps 1 and 2). The second column records the decisions 
from Step 3, and the third column describes the reasoning behind the deci-
sion to include or exclude each component. Having such a record provides 
a representation around which the modeler, clients and domain experts 
can debate and reach an accommodation of views on what should be in the 
model scope. 
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It may be helpful in some circumstances, particularly where there are differ-
ences in opinion, to generate a number of alternative model scopes and then 
to compare and debate the relative merits of each. Such a debate could focus 
on the validity, credibility, utility and feasibility of each model version.

Along side the scope table it is probably useful to have a diagram of the 
system and identify the model scope. A visual representation provides a 
more accessible view of the decisions being made about model scope, but it 
can only provide limited information. Meanwhile, the table is able to provide 
more detail, especially concerning the justification of the model scope.

The Ford Motor Company example: Determining the Model Scope

Table 4.1 shows the model scope for the Ford throughput model. This is shown 
diagrammatically in Figure 4.5. The main opportunity for scope reduction comes 
from the exclusion of the Hot Test and Final Dress areas.

4.7.2 Determining the Model l evel of Detail

Determining the level of detail requires decisions about the amount of detail 
to include for each component in the model scope. That is, determining the 

TAble 4.1

The Ford Throughput Model Example: Model Scope

Component Include/exclude Justification

Entities:
Engines Include Response: throughput of engines
Platens Include Experimental factor
Subcomponents Exclude Assume always available

Activities:
Line A Include Key influence on throughput
Head Line Include Key influence on throughput
Line B Include Key influence on throughput
Hot Test and Final Dress Exclude Limited impact on throughput as large buffer 

between Line B and Hot Test

Queues:
Conveyors Include Experimental factor

Resources:
Operators Exclude Required for operation of manual processes, 

but always present and provide a 
standardized service. They cause no 
significant variation in throughput.

Maintenance staff Include Required for repair of machines. A shortage of 
staff would affect throughput
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level of detail for each entity, activity, queue and resource to be included in 
the model. Table 4.2 provides a list of details that could be considered for each 
component type. This is not intended to be an exhaustive list, as indicated 
by the “other” category, but it does provide a useful starting point; although 
restraint should be used in defining “other” details to avoid unnecessarily 
long lists of clearly irrelevant details. Again, the reader may be able to think 
of additional details that could be listed against each component type. These 
can simply be added to those listed in Table 4.2.

The modeler, clients and domain experts can work through the details in 
Table 4.2 for each component in the model scope, determining whether the 
detail should be included or excluded, and also deciding on how each detail 
should be modeled. In a similar fashion to the model scope, the decision on 
whether to include a detail or not should be guided by its perceived effect 
on the validity, credibility, utility and feasibility of the model. These deci-
sions might be made at a meeting between the modeler, clients and domain 
experts. Decisions about the level of detail can be made with reference to 
these:

Judgment:•	  of the modeler, clients, and domain experts
Past experience:•	  particularly on behalf of the modeler
Data analysis:•	  analysis of preliminary data about the system
Prototyping:•	  developing part of the model and testing the effect of 
including and excluding details

Prototyping (Powell 1995, Pidd 1999) is useful for reducing the judgmental 
aspect of the decisions. In particular, the development of small computer 
models to test ideas can aid decisions about the level of detail required for a 
component. Indeed, prototyping can also aid decisions about model scope, 
particularly through the use of high-level models in which sections of the 
model can be sequentially included or excluded to determine their effect on 
the responses.

Hot test

Line A

Line B

Model scopeHead line

Final dress

Fig ur e 4.5
The Ford throughput model example: Model scope shown as the shaded area.
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A simple table format for recording these decisions is suggested, as shown 
in Table 4.3. This shows the components in the scope and each of the details, as 
listed in Table 4.2. The third column shows whether the detail is to be included 
in the model or excluded, while the fourth column provides a justification for 
the decision. Apart from listing details in the second column, it also provides 
a brief explanation of how a detail is to be modeled, but only for those details 
that are included in the model. This table provides a way of showing how the 
base model (the full list of details) is converted into a lumped model, by out-
lining what is to be included in the model and how it is to be represented.

TAble 4.2

Template for Level of Detail by Component Type

Component Detail Description

Entities Quantity Batching of arrivals and limits to number of entities
Grouping so an entity represents more than one 
item

Quantity produced
Arrival pattern How entities enter the model
Attributes Specific information required for each entity, 

e.g., type or size
Routing Route through model dependent on entity type/

attributes, e.g., job shop routing
Other E.g., display style

Activities Quantity Number of the activity
Nature (X in Y out) E.g., representing assembly of entities
Cycle time
Breakdown/repair Nature and timing of breakdowns
Set-up/change-over Nature and timing of set-ups
Resources Resources required for the activity
Shifts Model working and break periods
Routing How entities are routed in and out of the activity
Other E.g., scheduling

Queues Quantity Number of the queue
Capacity Space available for entities
Dwell time Time entities must spend in the queue
Queue discipline Sequence of entities into and out of the queue
Breakdown/repair Nature and timing of breakdowns
Routing How entities are routed in and out of the queue
Other E.g., type of conveyor

Resources Quantity Number of the resource
Where required At which activities the resource is required
Shifts Working and break periods
Other E.g., skill levels, interruption to tasks
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TAble 4.3

The Ford Throughput Model Example: Model Level of Detail

Component Detail
Include/
Exclude Justification

Entities:
Engines Quantity: produced. Model 

engines as an attribute of a 
platen (full/empty) to 
count engines produced

Include Response: throughput of 
engines

Arrival pattern Exclude Assume an engine block is 
always available to be 
loaded to the platen

Attribute: engine derivative Exclude No effect on machine cycles 
and therefore no effect on 
throughput

Routing Exclude Engines are only modeled as 
an attribute of a platen

Platens Quantity: for Line A, Head 
Line and Line B

Include Experimental factor

Arrival pattern Exclude All platens are always present 
on the assembly line

Attribute: full/empty 
Needed to count engines 
produced as platen leaves 
last operation on the line

Include Response: throughput of 
engines

Routing Exclude Routing determined by 
process not platen

Activities:
Line A Quantity: quantity of 

machines for each 
operation

Include Model individual machines as 
each may have a significant 
impact on throughput

Nature Exclude Subcomponents are not 
modeled and so no assembly 
is represented

Cycle time: fixed time Include Required for modeling 
throughput. Assume no 
variation in time for manual 
processes.

Breakdown: time between 
failure distribution

Include Breakdowns are expected to 
have a significant impact on 
throughput

Repair: repair time 
distribution

Include Breakdowns are expected to 
have a significant impact on 
throughput

Set-up/change-over Exclude No set-ups in real facility

(Continued)
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TAble 4.3  (Continued)

The Ford Throughput Model Example: Model Level of Detail

Component Detail
Include/
exclude Justification

Resources Include Identify number of 
maintenance staff required 
to perform repair of 
machines

Shifts Exclude No work takes place outside 
of on-shift time

Routing: next conveyor 
including routing to rework 
areas after test stations

Include Routing of platens defines the 
key interaction between 
system components

Head Line As for Line A.
Line B As for Line A.

Queues:
Conveyors Quantity: 1 Include All conveyors are individual

Capacity Include Experimental factor
Dwell time: model as index 
time for platens

Include Affects movement time and 
so throughput

Queue discipline: FIFO Include Affects movement time and 
so throughput

Breakdown/repair Exclude Failures are rare and so have 
little effect on throughput

Routing: to next machine 
including routing logic to 
operations with more than 
one machine

Include Routing of platens defines the 
key interaction between 
system components

Type: accumulating 
conveyors

Include Enables maximum utilization 
of buffer space and so 
improves throughput

Resources:
Maintenance 
staff

Quantity Include Because there are fewer 
maintenance staff than 
machines, it is possible for 
staff shortages to be a 
bottleneck affecting 
throughput

Where required: identify 
machines that require 
maintenance staff for repair

Include Required to allocate work to 
maintenance staff

Shifts Exclude No work takes place outside 
of on-shift time

Skill level Exclude Assume all staff can repair all 
machines
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The Ford Motor Company example: Determining the l evel of Detail

Table 4.3 shows the level of detail for the Ford throughput model. Note that an 
operation is the type of activity, while a machine is the equipment that performs 
that operation. There is more than one machine for some operations.

4.8 Identifying Assumptions and Simplifications

In determining the scope and level of detail of the model, various assump-
tions and simplifications are made. As a reminder, assumptions are made 
when there are uncertainties or beliefs about the real world being modeled, 
while simplifications are incorporated into a model to enable more rapid 
model development and use, to reduce data requirements and to improve 
transparency (understanding) (Chapter 1, Section 3.1). For the purposes of 
clarity, it is useful to explicitly list the assumptions and simplifications. 

In large measure, the assumptions and simplifications can be identified 
with reference to those components and details that have been excluded 
from the model. Indeed, a component or detail will have been excluded on 
the basis that it is an assumption, simplification or a fact, the latter category 
referring to truisms about the real system. For instance, in the Ford through-
put model (Table 4.3), set-ups/change-overs are excluded because it is known 
that there are no set-ups or change-overs in the real system. This is a fact. It 
should be noted that the assumptions and simplifications (indeed, facts) are 
not listed in the excluded items alone. For instance, under activities for line A 
in Table 4.3, there is an assumption about the cycle time of manual processes. 
This suggests that the modeler should not only look under the excluded com-
ponents and details in the scope and level of detail tables for assumptions 
and simplifications, but he/she should pay careful attention to those items 
included in the model as well.

Once all the assumptions and simplifications have been identified it may be 
useful to assess each of them for their level of impact on the model responses 
(high, medium, low) and the confidence that can be placed in them (high, 
medium, low). This should be jointly agreed between the modeler, clients 
and domain experts. Obviously such assessments can only be based on judg-
ment at this stage. This process, however, can be useful for ensuring that all 
the assumptions and simplifications seem reasonable and for ensuring all 
parties agree with the modeling decisions that are being made. Particular 
attention might be paid to those assumptions and simplifications that are 
seen to have a high impact and for which the confidence is low. Where neces-
sary, the conceptual model might be changed to mitigate concerns with any 
of the assumptions and simplifications.
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One issue that is not discussed here is how to select appropriate simplifica-
tions. The identification of opportunities for simplification is largely a matter 
of the experience of the modeler, although discussion between the modeler, 
clients and domain experts may also provide ideas for simplification. Beyond 
this, it is useful to make reference to a standard set of simplifications. A range 
of simplification methods exist, such as, aggregating model components, 
replacing components with random variables and excluding infrequent events. 
These have been the subject of a number of publications (Morris 1967, Zeigler 
1976, Innis and Rexstad 1983, Courtois 1985, Ward 1989, Robinson 1994). 

The Ford Motor Company example: Assumptions and Simplifications

Figures 4.6 and 4.7 list the assumptions and simplifications for the Ford through-
put model.

4.9 Identifying Data Requirements

Apart from defining the nature of the model, the level of detail table also 
provides a list of data requirements. Three types of data are required for a 
simulation study: contextual data, data for model realization and validation 

Model simplifications
• Subcomponents are always available.
• No variation in time for manual processes.

Fig ur e 4.7
The Ford throughput model example: Model simplifications.

Modeling assumptions
• Capacity of the buffer before hot test and final dress is sufficient to cause minimal

blockage to the assembly line from downstream processes.
• Manual operators are always present for manual processes and provide a standardized

service.
• An engine block is always available to be loaded to a platen.
• No work is carried out during off-shift periods, therefore shifts do not need to be

modeled.
• Conveyor breakdowns are rare and so have little impact on throughput.
• All staff can repair all machines.

Fig ur e 4.6
The Ford throughput model example: Modeling assumptions.
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data (Pidd 2003). Contextual data are required for understanding the prob-
lem situation and as an aid to forming the conceptual model (e.g., a layout 
diagram of the operations system and preliminary data on service times). 
Data for model realization can be directly identified from the level of detail 
table. Data for validation (e.g., past performance statistics for the operations 
system, if it currently exists) need to be considered in the light of the model 
that is being developed and the availability of data for the real system. Here, 
we shall only consider data for model realization.

It is a fairly straightforward task to identify the data for model realization 
from the level of detail table. This can be done with reference to the com-
ponents and their details that are to be included in the model. These data 
split into two types: the experimental factors (inputs) and model parameters. 
Experimental factors are varied during experimentation but require initial 
values. Parameters are data that remain unchanged during experimentation. 
Identifying the data from the level of detail table supports the idea that the 
model should drive the data and not vice versa (Pidd 1999).

Once the data for model realization are identified, responsibility for obtain-
ing the data should be allocated with clear direction over the time when the 
data need to be available. Of course, some data may already be available, 
other data may need to be collected and some may be neither available nor 
collectable. Lack of data does not necessitate abandonment of the project. 
Data can be estimated and sensitivity analysis can be performed to under-
stand the effect of inaccuracies in the data. Even where data are available or 
can be collected, decisions need to be made about the sample size required 
and care must be taken to ensure the data are sufficiently accurate and in the 
right format. For a more detailed discussion on data collection see Robinson 
(2004).

If data cannot be obtained, it may be possible to change the design of the 
conceptual model so that these data are not required. Alternatively, the mod-
eling objectives could be changed such that an alternative conceptual model 
is developed that does not require the data in question. During data col-
lection it is almost certain that various assumptions will have to be made 
about the data; these assumptions should be recorded along with those iden-
tified from the conceptual model. This all serves to increase the iteration in 
the modeling process, with the conceptual model defining the data that are 
required and the availability of the data defining the conceptual model. In 
practice, of course, the modeler, clients and domain experts are largely cog-
nizant of the data that are available when making decisions about the nature 
of the conceptual model.

The Ford Motor Company example: Data r equirements

Figure 4.8 shows the data that are required for the Ford throughput model. These 
have been identified from the details of the included components in the level of 
detail table (Table 4.3).
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4.10  Model Assessment: Meets the Requirements 
of a Conceptual Model?

Throughout the development of the conceptual model, the extent to which 
the proposed model meets the requirements for validity, credibility, utility 
and feasibility needs to be checked and questioned. In doing so this provides 
an assessment of the conceptual model.

Conceptual model validity is “a perception, on behalf of the modeler, that 
the conceptual model can be developed into a computer model that is suf-
ficiently accurate for the purpose at hand” (Chapter 1, Section 5). It is not 
possible to measure the accuracy of the conceptual model until at least a 
full computer representation is available, if it is possible to do so then (Pidd 
2003, Robinson 1999). The modeler, however, is able to form an opinion about 
whether the proposed model is likely to deliver sufficient accuracy for the 
purpose to which it will be put. This opinion will largely be based on a belief 
as to whether all the key components and relationships are included in the 
model. The modeler’s opinion must also be based on a clear understand-
ing of the model’s purpose (modeling objectives) and the level of accuracy 
required by the clients. Further to this, input from the clients and especially 
the domain experts is important in forming this opinion about validity.

Credibility meanwhile is defined as “a perception, on behalf of the cli-
ents, that the conceptual model can be developed into a computer model 
that is sufficiently accurate for the purpose at hand” (Chapter 1, Section 5). 
Judgment about the credibility of the model relies on the clients’ opinions. 
This is formed by the past experience of the clients and their experience with 
the current project, much of which is a reflection upon their interaction with 
the modeler (Robinson 2002). In particular, the clients need to have a good 
understanding of the conceptual model. A clear description of the concep-
tual model is therefore required. This can be delivered through a project 
specification that outlines all the phases of conceptual model development 
as described above, from the understanding of the problem situation and the 
modeling objectives through to the scope and level of detail of the model and 

Data requirements 
• Planned quantity of platens on each assembly line
• Machines: quantity for each operation, cycle time, time between failure distribution,

repair time distribution, routing rules (e.g., percentage rework after a test station)
• Conveyors: capacity, index time for a platen, routing rules (e.g., split to parallel

machines)
• Maintenance staff: quantity, machines required to repair

Fig ur e 4.8
The Ford throughput model example: Data requirements for model realization.
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the assumptions and simplifications. Ultimately the modeler and the clients 
must have confidence in the conceptual model, reflected in the validity and 
credibility of the conceptual model, respectively.

The utility of the conceptual model is “a perception, on behalf of the modeler 
and the clients, that the conceptual model can be developed into a computer 
model that is useful as an aid to decision-making within the specified con-
text” (Chapter 1, Section 5). Issues to consider are the ease-of-use, flexibility, 
run-speed, visual display, and potential for model/component reuse. These 
requirements are expressed through the general project objectives. All must 
be of a sufficient level to satisfy the needs of the project. For instance, if the 
model is to be used by the modeler for experimentation, then ease-of-use is of 
less importance than if the model is to be used by the clients or a third party. 

The final requirement, feasibility, is “a perception, on behalf of the modeler 
and the clients, that the conceptual model can be developed into a computer 
model with the time, resource and data available” (Chapter 1, Section 5). Can 
the model be developed and used within the time available? Are the neces-
sary skills, data, hardware and software available? The modeler, clients and 
domain experts need to discuss these issues and be satisfied that it is pos-
sible to develop and use the conceptual model as proposed.

It may be useful for the modeler to generate several conceptual model 
descriptions and then to compare them for their validity, credibility, utility 
and feasibility. The model that is perceived best across all four requirements 
could then be selected for development.

All of the above is contingent on being able to express the conceptual model 
in a manner that can be shared and understood by all parties involved in a 
simulation study. In the terms of Nance (1994), this requires the expression of 
the modeler’s mental conceptual model as a communicative model. The tables 
derived in the conceptual modeling framework described above provide one 
means for communicating the conceptual model; see Figures 4.2, through 4.4, 
4.6, and 4.7 and Tables 4.1 and 4.3. Beyond this, diagrammatic representations 
of the model are also useful (Figures 4.5 and 4.9), and possibly more beneficial 
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Fig ur e 4.9
An illustrative process flow diagram of part of the Ford throughput conceptual model.
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as a communicative tool (Crapo et al. 2000). A range of such methods have 
been used for representing simulation conceptual models, for instance:

Process flow diagrams (Robinson 2004); see Figure 4.9•	
Activity cycle diagrams (Hills 1971)•	
Event graphs (Schruben 1983, Som and Sargent 1989)•	
Digraphs (Nance and Overstreet 1987)•	
UML (the unified modeling language) (Richter and März 2000)•	
Object models (van der Zee 2006)•	
Simulation activity diagrams (Ryan and Heavey 2006)•	

Pooley (1991) provides a useful review of diagramming techniques that 
might support simulation modeling. The conceptual model could, of course, 
be represented using the visual display facilities of the simulation software, 
without the need for coding the detail of the model. Figure 4.9 shows a sim-
ple process flow diagram for a portion of the Ford throughput model.

4.11 Conclusion

The conceptual modeling framework described above provides a series of 
iterative activities for helping a modeler to design a conceptual model for 
a specific problem situation. Each activity is documented with a table sum-
marizing the decisions made. The use of these tables (along with diagram-
matic representations of the model), provides a means for communicating 
and debating the conceptual model with the clients and domain experts. As 
a result, it provides a route to agreeing upon the nature of the simulation 
model that is required to intervene in the problem situation.

In conclusion, we consider the question of whether there is a right con-
ceptual model for any specified problem. For two reasons, the answer is 
“no.” First, we have identified conceptual modeling as an art. Albeit that the 
framework above provides some discipline to that art, different modelers 
will not come to the same conclusions. Any other expectation would be akin 
to expecting an art class to paint exactly the same picture of the same subject. 
There has to be room for creativity in any art, including conceptual mod-
eling. There are, of course, better and worse conceptual models. The four 
requirements of a conceptual model (validity, credibility, utility, and feasibil-
ity) provide a means for distinguishing better from worse.

A second reason why there is no right conceptual model is because the 
model is an agreement between more than one person (the modeler, clients, 
and domain experts). Each has his/her own preferences for and perceptions 
of what is required. These preferences and perceptions are expressed through 
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the four requirements of a conceptual model. The framework  provides a 
means for communicating and debating the conceptual model, with a view 
to reaching an agreement, or at least an accommodation of views, over the 
nature of the model. The conceptual model is, therefore, some compromise 
between alternative preferences and perceptions of the world.

In short, there is no absolutely right conceptual model because the model 
is dependent on the preferences and perceptions of the people involved in 
the simulation study. It would seem that the idea of developing conceptual 
modeling frameworks that will always lead to a single best model is futile. 
Instead, our aim should be to provide frameworks that provide a means for 
communicating, debating and agreeing upon a conceptual model, while also 
releasing the potential for creativity in the modeling process. This is what 
the conceptual modeling framework described here aims to provide.
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5.1  Introduction

A few decades ago, Hurrion introduced the notion of visual interactive 
 simulation (Hurrion 1976, 1989). Its basic contribution lies in the fact that it 
brings analysts and stakeholders together by means of an animated display. 
As such, it facilitates the joint discussion on model validation/verification, 
and—maybe even more important—alternative and possibly better solu-
tions to the problem that the modeling and simulation project is meant to 
solve (Bell and O’Keefe 1987, Bell et al. 1999). Refinement of the approach is 
possible building on principles of object-oriented design (Booch 1994). Object 
orientation was reembraced as a metaphor for simulation modeling in the 
1990s, being developed for the early simulation language SimulaTM (Dahl 
and Nygaard 1966). It foresees in a natural one-to-one mapping of real-world 
concepts to modeling constructs (Glassey and Adiga 1990, Kreutzer 1993, 
Roberts and Dessouky 1998).

Visual interaction and object orientation set rough guidelines for build-
ing a “conceptual” model for simulation (Balci 1986). Typically, a concep-
tual model is meant to facilitate the joint search for better-quality solutions, 
building on a common understanding of the problem and system at hand. 
This implies the conceptual model being both transparent and complete to 
all parties involved in the study.

Clearly, model visualization greatly popularized the use of modeling and 
simulation for systems design. This popularity makes clear that facilitating 
stakeholders’ involvement in the simulation study is crucial to the acceptance 
of modeling and simulation as a decision support tool. It may be expected 
that such “facilitation” is even more important nowadays as systems design 
often involves multiple problem owners as in, for example, supply chains, 
health-care chains and transportation networks. Moreover, the complexity 
of suchlike systems makes problem owners participation in the search for 
better solutions indispensable, given their role as domain experts. The chal-
lenge for the analyst is to contribute to, and guide this process, aiming to 
build mutual trust, and fostering the joint creation and acceptance of good 
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quality solutions. Clearly, a visual interactive model that is validated, and 
understood by all parties involved, may act as an enabler in answering to 
this challenge.

Unfortunately, many simulation models tend to be limited with respect to 
transparency and completeness in terms of decision variables. Typically, a 
subset of relevant system elements is not visualized or distributed over the 
model. Common causes may be found in the analyst’s use of his implicit ref-
erence models and (limited) facilities offered by the simulation language, 
which is not domain specific or is incomplete. In addition to the analyst’s 
skills and tool qualities, the characteristics of the project at hand should be 
mentioned, such as, the available resources, budget restrictions, time horizon, 
client’s interest in modeling, and modeling efforts as they follow from prob-
lem complexity. Taylor and Robinson (2006) mention domains such as health 
care, services, and business processes as either not being represented or rep-
resented in such a way that needs to significantly improve over the next dec-
ade. Also, more traditional fields of simulation application may be plagued 
by similar shortcomings. Several authors report that control structures in 
manufacturing systems, that is, the managers or systems responsible for con-
trol, their activities and their mutual attuning of these activities are often left 
implicit (Mize et al. 1992, Pratt et al. 1994, Bodner and McGinnis 2002, Galland 
et al. 2003). Control elements are, for example, dispersed over the model, are 
not visualized, or form part of the time-indexed scheduling of events.

In our previous work we addressed the above issue for the manufac-
turing field. We did so by presenting a conceptual modeling framework 
for manufacturing simulation (van der Zee and Van der Vorst 2005, van 
der Zee 2006a). The framework offers a high-level description of essen-
tial manufacturing elements and relationships as well as their dynamics. 
It is meant to serve as an explicit frame of reference for more disciplined 
modeling and visualization, and to offer a common conceptual basis for 
improving model understanding, see Figure 5.1. We studied the relevance 
and use of the modeling framework for simulation studies on manufactur-
ing planning.

The development of the modeling framework, as it was presented and 
applied in our previous work, is the net result of (1) the recognition of the 
aforementioned problem on simulation model development—the lack of 
explicit guidance for the analyst in model creation, and (2) a domain analysis for 
the manufacturing field, which resulted in the identification of a comprehen-
sive set of general and domain-specific decomposition principles. Essentially, 
the framework distinguishes among of three elementary object classes, i.e., 
agents, flows, and jobs, which are further tailored to the manufacturing 
domain, using this set of decomposition principles. In this chapter we con-
sider the process of developing the conceptual modeling framework for a 
specific domain in greater detail. This is motivated by two reasons. The first 
is our idea of highlighting the underlying approach toward model  engineering, 
which is assumed to have a validity that exceeds the manufacturing domain. 
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Second, and more specific, we aim to make the proposed modeling frame-
work for manufacturing simulation to an open architecture amendable for 
improvements, extensions, and refinements.

5.2  Literature Review: Seeking Discipline in Model Creation

The thesis underlying this chapter is that transparent simulation models 
enable an active participation of stakeholders in decision support. In turn 
this is assumed to facilitate the build up of mutual trust, model validation, 
creativity in solution finding, and solution acceptance. This brings us to the 
basic question: how to contribute to model transparency, i.e., enhance model 
understanding for all stakeholders? In particular, which guidance is avail-
able for the analyst fulfilling this task of model development, i.e., the choice, 
detailing, and visualization of model elements and their workings? Note 
that our prime focus in this chapter is on the development of the conceptual 
model. Obviously, it is the embedding of the model in project contents and its 
organization, which determines its contribution to ultimate project success 
(Robinson 2002).

The modeling task of the simulation analyst is often considered an art 
(Shannon 1975). This stresses the importance of the analyst’s creativity in 
model building—trying to capture relevant elements of a system with the 
right amount of detail. Typically, this creativity is bounded and guided by 
implicit or explicit guidelines, i.e., good modeling practices and principles 

Modeling framework:
conceptual view on
a domain

Simulation tool
Diagramming technique  

Stakeholders

Analyst 

Mental modeling Mental modeling

Model  building

Fig ur e 5.1
Modeling framework: Role in supporting simulation model development.
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(Pidd 1999, Law and Kelton 2000), domain related insights (Valentin and 
Verbraeck 2005), and—last but not least—logic and libraries underlying sim-
ulation software (Kreutzer 1986). Let us consider these guidelines in some-
what more detail, starting from a recent survey of Robinson (2006, 2008).

Robinson distinguishes between three basic approaches on simulation 
model development: principles of modeling, methods of simplification and 
modeling frameworks. Here we characterize each of the approaches. For 
related references please consult the work of Robinson. Principles of modeling 
refer to the general case of conceptual modeling. Guiding principles include 
the need for model simplicity, the advocated policy of incremental mode-
ling, and the good use of metaphors, analogies, and similarities in model 
creation. Methods of simplification focus on the possibility of reducing model 
scope and/or the level of detail for model elements, starting from their rel-
evance for model accuracy. Gains may, for example, be realized by combin-
ing model elements, leaving them out or adapting their attributes. Clearly, 
these methods are helpful in model construction by pointing at possibilities 
for model pruning. However, they do not address model creation in terms 
of what is to be modeled. Modeling frameworks specify a procedural approach 
in detailing a model in terms of its elements, their attributes and their rela-
tionships. Examples include the general case of systems representation and 
domain related cases. The general case of systems representation foresees 
in conceptualization building on elementary system elements, i.e., compo-
nents, including their variables and parameters, and mutual relationships, 
see Shannon (1975). Such representations are reflected in basic diagramming 
techniques for example, Petri Nets, Activity Cycle Diagrams (Pooley 1991), 
and Event Graphs (Schruben 1983). Domain related cases refer primarily 
to the military field, see Nance (1994). Outside this domain, examples are 
scarce. Guru and Savory (2004) propose a framework for modeling physical 
security systems. Also, our previous work on the modeling framework for 
manufacturing systems (van der Zee and Van der Vorst 2005, van der Zee 
2006a) may be included in this category.

Next to principles, methods and frameworks the analyst may be 
 guided—or restricted—in his conceptual modeling efforts by the simulation 
software being adopted for the project. Pidd (1998) distinguishes between 
several types of software ranging from general purpose languages to vis-
ual interactive modeling systems (VIMS). While the former category does 
not provide a conceptual notion or basis for modeling, the latter category 
is tailored toward simulation use assuming model building to be based on 
an elaborate library of building blocks, which may be domain related to a 
certain degree. Further we mention a specific class of simulation modeling 
tools based on elementary concepts like, for example, DEVS (Zeigler 1990) 
and Petri Nets (Murata 1989). Where VIMS offer contextual rich libraries, 
these tools force the user to build models from a small set of elementary 
components. However, where the logic underlying library set up for VIMS 
may be found in a pragmatic and evolutionary path, libraries for tools like 
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DEVS and Petri Nets conform to more rigorous mathematical standards. 
This enhances model transparency; however, this tends to be only valid for 
small-scale problems. Embedding real-life systems often leads to representa-
tions in terms of large networks of similar building blocks, each adding just 
little detail. Typically, they are difficult to interpret for nonanalysts (Kamper 
1991). 

The above discussion leads us to the following observations on available 
guidance for the analyst: 

Relevant approaches are available for supporting the analyst in •	
somewhat more disciplined modeling. However, they mostly 
address the general case, or aim at model pruning instead of model 
creation.
Much guidance may come from the specialized libraries of so-called •	
visual interactive modeling systems. However, their contextual rich-
ness does not a priori guarantee model completeness or transparency. 
Libraries may be incomplete with respect to modeling requirements 
of certain domains, for example, consider the modeling of manu-
facturing control (see section 5. 1). Also, the skills of the analyst in 
mastering the tool and the availability of insightful documentation 
are of great significance in this respect.
Simulation tools building on more fundamental concepts like DEVS •	
or Petri Nets may allow for transparent modeling, given a clear set 
of well defined building blocks. However, this transparency tends to 
be restricted to small-scale problems.

The motivation for developing our conceptual modeling framework for 
manu facturing simulation (van der Zee and Van der Vorst 2005) is the lack 
of an explicit manufacturing domain related approach for model develop-
ment. A specific focus concerns the modeling of control logic. See van der 
Zee and Van der Vorst (2005) and van der Zee (2006a) for a comparison with 
alternative frameworks. In this article we will elaborate on the setup of the 
modeling framework. The framework defines a conceptual architecture con-
sisting of a number of component classes, i.e., agents, flow items, and jobs. 
The architecture is founded on a comprehensive set of general and domain-
specific decomposition principles. Identifying and classifying these decom-
position principles, as well as their combination, will enable these:

Possible improvements, extensions, and refinements of the con-•	
ceptual modeling framework for manufacturing simulation, as its 
source code is now “open”
The development of alternative frameworks for other or related •	
domains
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5.3  On the Construction of a Modeling Framework

In this section we address the construction of our conceptual modeling 
framework for manufacturing. Before we do so we will clarify our idea of 
a model.

5.3.1  Model and experimental Frame

As a first step in modeling Ören and Zeigler (1979) suggest to distinguish 
between the “experimental frame” and the “model.” Where the model cor-
responds to a (limited) representation of a real-world system, the experi-
mental frame specifies those circumstances under which the real system 
is to be observed or experimented with. The separation between model 
and experimental frame has been implemented in the language SIMANTM 
(Pegden et al. 1990, Pidd 1998). Here the model describes the physical ele-
ments of the system (machines, workers, goods, etc.) and their logical 
interrelationships. The experimental frame specifies the experimental con-
ditions under which the model is to run, like initial conditions, type of 
statistics gathered, etc.

5.3.2  Modeling Framework

The construction of the modeling framework foresees in two phases: (1) a 
domain analysis resulting in a set of decomposition principles and (2) an 
engineering process in which decomposition principles are “framed” in 
terms of high-level class definitions for the field, see Figure 5.2.

Domain

Decomposition principles

Modeling framework

Analysis

Framing

Fig ur e 5.2
Construction of a modeling framework.
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5.3.3  Decomposition Principles

The structure for a model concerns two types of elements (Ören and Zeigler 
1979):

Component models that make up the overall model: They specify •	
the static characteristics for the system. Their attributes characterize 
states, inputs and outputs.
Rules of interaction among component models: They specify dynam-•	
ics for the system.

Let us now consider decomposition principles for identifying and character-
izing both types of elements as they resulted from our domain analysis of 
the manufacturing field, see Table 5.1.

Principles I–IV characterize entities for a wider category than just manu-
facturing systems, whereas principles V–VII are somewhat more specific for 
the manufacturing field. 

5.3.3.1  I External and Internal Entities

The distinction between external and internal entities follows from the 
 concept of a system boundary. Typically, system design involves the 
choice,  configuration and operation of “internal” entities. “External” entities 
are only modeled as far as their behavior is relevant for the system. Rather, 
they act as “sources” or “sinks” for physical flows (goods, resources), or data.

5.3.3.2  II Movable and Nonmovable Entities

The physical and logical infrastructure for a manufacturing system is typi-
cally made up of entities like workstations, information systems, and man-
agers. As such the respective entities are considered nonmovable. They 
communicate by exchanging movable items like goods and messages. 
Note how the distinction between movable and nonmovable entities may 

TAble 5.1

Decomposition Principles Underlying the Modeling 
Framework for Manufacturing Simulation

I External and internal entities (system boundary)
II Movable and nonmovable entities
III Queues and servers
IV Intelligent and nonintelligent entities
V Infrastructure, flows, and jobs
VI Modality: physical, information, and control elements
VII Dynamics: executing jobs
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sometimes be subtle. For example, consider an operator being assigned to a 
single machine vs. an operator being assigned to multiple machines. In the 
former case the operator may be considered as belonging to the manufactur-
ing infrastructure, whereas the latter case suggests considering the operator 
as a movable shared resource.

5.3.3.3  III Queues and Servers

Nonmovable entities may be classified according to their associated activi-
ties. Following the general notion in management science of manufacturing 
systems being queueing systems, a basic distinction can be made between 
queues (store items waiting) and servers (service the items being processed).

5.3.3.4  IV Intelligent and Nonintelligent Entities

According to Lefrancois and Montreuil (1994) and Lefrancois et al. (1996), a 
distinction between intelligent and nonintelligent entities permits a more 
natural and richer presentation and implementation of systems modeled. In 
such a context, intelligent entities are modeled as agents. Agents are used to 
implement decision rules inherent to manufacturing system planning and 
control. Examples include logic for scheduling, dispatching and releasing 
jobs for a machine or department. According to Lefrancois and Montreuil 
(1994) and Lefrancois et al. (1996), workstations and work orders are assumed 
to be nonintelligent. We agree with respect to work orders. However, in this 
chapter we consider work stations to be intelligent, because of their local con-
trol logic for initiating and steering jobs. We come back to this point below; 
see section 5.3.4.

5.3.3.5  V Infrastructure, Flows, and Jobs

Manufacturing systems are built up of infrastructural elements like 
 workstations, information systems, and managers. Flows refer to the objects 
being exchanged and transformed within this infrastructure as a net effect 
of jobs being executed.

5.3.3.6  VI Modality: Physical, Information, and Control Elements

The separation of physical, information, and control elements is assumed to 
facilitate a higher degree of model reusability and a more “natural” model 
building environment (Mize et al. 1992). Mize et al. point at the fact that 
traditional languages do not provide natural constructs for separately and 
distinctly modeling the three types of basic functions, i.e., physical trans-
formation, information exchange, and control/decision. In addition, the 
constructs provided for information exchange and control specification 
are often dispersed in the model (Pratt et al. 1994). Clearly, this hinders 
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modification and programming. A policy that adheres rather strictly to the 
“one component– one function” doctrine would suffer less from these draw-
backs. In turn this provides a more natural modeling environment as the 
modeler is forced to think about model elements independently.

5.3.3.7  VII Dynamics: Executing Jobs

An important principle introduced for our modeling framework is: “all 
 activities in the manufacturing system have a common denominator: the 
job” (van der Zee and Van der Vorst 2005). Identifying each activity as a job 
is meant to bring two important advantages. First, the use of this common 
denominator for all activities will provide a clear and natural mechanism 
for event scheduling, where events are related to the start and the comple-
tion of jobs. Second, an explicit notion and allocation of company activities 
 (compare V), increases visibility and traceability of decision variables.

5.3.4  engineering the Framework: Framing Decomposition Principles

In our focus a modeling framework concerns a well-defined conceptual view 
on a domain. A modeling framework is the outcome of an engineering proc-
ess in which generic classes of entities and their workings are identified and 
characterized, building on a comprehensive set of domain related and more 
general decomposition principles.

Here we will discuss the construction of our modeling framework for man-
ufacturing simulation. More in particular we will show how we “framed” 
decomposition principles in terms of domain related classes, class hierarchies, 
and class relationships. As a starting point for discussion we use Tables 5.1 
and 5.2. As far as notation is concerned we will conform ourselves to an object-
oriented approach, as described in “the object model,” see the appendix and 
Booch (1994) for more details. Application of decomposition principles will be 
referred to by their Roman numbering, see Table 5.1. The resulting elements 
of the framework will be addressed by their alphabetical numbering.

5.3.4.1  Main Classes and Their Hierarchies

To represent entities in the manufacturing domain we define three main 
classes in our modeling framework: agents, flow items, and jobs (V; A–C). 
Agents represent the infrastructural, nonmovable elements of a  manufacturing 
system such as workstations, information systems and managers (II; A). 
They are assumed to be intelligent to a certain extent (IV; D). Their decision-
 making capabilities relate to transformations of goods or data. A boundary 
is recognized between the system under study and its related environment. 
This is reflected by distinguishing between internal and external agents in 
the class hierarchy (I; A). For internal agents such as machines, warehouses, 
Automatic Guided Vehicles, planners, etc., we consider two subclasses, 
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TAble 5.2

Framing Decomposition Principles in Class Definitions, Class Hierarchies, and 
Class Relationships
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(Continued)



114 Conceptual Modeling for Discrete-Event Simulation

i.e.,  processors, and storages. They are distinguished by considering the 
nature of their dominant type of resources (III; A). For external agents, it is 
more common to consider sub classes suppliers and customers, i.e., proces-
sor types that act as “sources” and “sinks,” respectively (III; A). 

Flow items constitute the movable objects within manufacturing systems (II; 
B). We include four types of flow items in the modeling framework: goods 
(like, for example, materials, parts, semifinished products), resources (like, 
for example, manpower, tools, vehicles), data (like, for example, feed back 
on control decisions, forecasts) and job definitions (VI; B). Goods, resources, 
or data seldom flow spontaneously from one location to another, as mostly 
some form of control is exercised over agent activities. Typically, agents’ jobs 
are directed by messages. We address this type of messages as job definitions. 
Job definitions act both as a trigger for initiating agent activities and as a car-
rier of relevant information related to these activities, such as, for example, 

TAble 5.2  (Continued)

Framing Decomposition Principles in Class Definitions, Class Hierarchies, and 
Class Relationships
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their input, processing conditions and the agents to whom the resulting out-
put should be sent.

In a manufacturing system agents and flows are linked by jobs, which 
describe manufacturing activities (V; C). In our job-oriented worldview, we 
assume that each manufacturing activity is referred to as a job, being the respon-
sibility of a specific agent. In turn, a job concerns a comprehensive set of 
activities, i.e., transformations linking a set of flow items and agent resources. 
Note that a job definition is an intrinsic element of this set of flow items, 
which influences both timing and characteristics of jobs, see above.

It is common practice to think of agents in terms of the type of flow items 
that are the subject of their jobs. In line with practice it is possible to define 
more specific classes of internal agents, where the type of flow item serves as 
a parameter. For example, a workstation may be considered an internal agent 
of a processor type handling goods. In a similar way control systems and 
decision-makers may be defined as internal agents producing job definitions.

5.3.4.2  Class Definitions: Agents

In this subsection we consider the structure for agents. This follows from its role 
as an intelligent entity (IV; D). The structure for an internal agent was inspired 
by the atomic model as defined by Zeigler (1976, 1990). Starting from a general 
view on simulation modeling an atomic model encapsulates basic elements and 
functions of an entity in a formal way. In our discussion of a class definition for 
agents we will distinguish between internal and external agents.

The state of an agent relates to its attributes and their values. Attributes 
include buffers and transformers (III; D). Buffers model the temporary stor-
age of those flow items that are the prime subject of a future job or that enable 
(facilitate) job execution (resources, information). The first category of flow 
items is addressed in Table 5.2 as primary flow items. For example, a machine 
job foresees in sheet metal (goods) being its prime subject, while tools, and 
personnel (resources) facilitate the transformation of the sheet metal. Note 
how the latter conception of personnel only considers their working skills and 
“neglects” their reasoning capabilities. Except for the buffer that stores the job 
definitions for an agent, i.e., the control queue, buffers for facilitative flow items 
are optional. The transformer reflects the physical or logical location for those 
flow items that are associated with the agent’s set of jobs being executed.

The previous paragraph presented the basic elements of an internal agent. 
To discuss agent functions we distinguish between input and output opera-
tions, and the local intelligence (IV; D). The handling of incoming flow items 
is dealt with by one or more input operations. An input operation puts flow 
items in the right buffers. The diagram shows two such input operations: one 
that puts job definitions in the control queue and one that updates buffers. 
In a similar way, the output operations take care of sending the flow items 
resulting from a job to the respective output addresses (agents) by calling the 
respective input operations.
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The initiation of a job is enabled by rules comprised in the local intelligence 
(IV; D). As a first rule in initiating a job, the job with the highest priority in 
the control queue is selected for processing. Before a job may be started, two 
requirements (preconditions) have to be fulfilled: (1) the availability of a job 
definition, and (2) the availability of the required input (which can be null) 
for a job. In accordance with our job-oriented approach (V, VII; D) each job 
has to be prespecified. This is reflected in the requirement that a job defini-
tion should be present in the control queue. The job definition specifies the 
required input to be withdrawn from the buffers, capacity needed, process-
ing conditions and the identifiers of agents to which the job’s output has to 
be sent. 

The notion of local intelligence applies to all agents, including planners and 
the work stations assigned to them. Where intelligence for work stations may 
be restricted to elementary rules for timing and release of jobs, decision logic 
for planners may be comprehensive. Decision logic for planners may refer to 
a wide range of rules that support, for example, capacity planning, material 
planning, scheduling and dispatching. Here the output of the one decision 
job (for example, capacity planning) may determine input for the other deci-
sion job (for example, scheduling). In this respect a hierarchy of planners and 
their jobs may be distinguished (see Relationships between agents).

Let us now consider external agents, i.e., the customers and suppliers that 
make up the environment for a manufacturing system. Besides the element 
local intelligence (IV; E, F), which is also found in internal agents, genera-
tors and annihilators are defined for external agents. Generators represent 
“sources” of flow items, while annihilators model “sinks” in which flow 
items disappear (I; E, F). Local intelligence may be used to link activities 
of generator and annihilator. For example, local intelligence may comprise 
a rule that states that a new order may only be issued if the goods corre-
sponding to the last order have been received. Here an order corresponds 
to a subclass of data (F(I|D)), which acts as a trigger for a control action of 
a planner (represented as Controller), so that the flow items (F(M)) are pro-
duced to satisfy the customer. Note how notation reflects the entity class 
(F for Flow Item), the subclass (G for Good, R for Resource, I for Data, C for 
Job Definition, and M a parameter—in case of no prespecified subclass), and 
their specific characteristics (D for Trigger). In a similar way, we define the 
supplier by interchanging the labels for input and output (F(I|D, F(M)), and 
the generator and the annihilator, so that the supplier is triggered by the 
agent Controller to supply goods to the system.

5.3.4.3  Relationships between Agents

Agents communicate with other agents by exchanging flow items, being the 
net result of job execution (V; G). In this subsection we consider two special-
izations of the basic type of relationship between agents in somewhat more 
detail: 
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The relationship between an internal agent and his controller•	
Relationships between external and internal agents•	

Control is assumed to be effectuated by the sending of job definitions from a 
controller, such as a planner, dispatcher, etc., to a subordinate internal agent 
(VI; H). Each agent refers to exactly one controller from which it receives its 
job definitions, denoted as F(C). Conversely, a subordinate can send informa-
tion (F(I|D)) about its status to its controller. Such data act as a request for 
control; it is one of the jobs of the controller to interpret this type of message. 
Mechanisms like hierarchical control and coordinated control are embedded 
in this class relationship. Both mechanisms may be considered as important 
building blocks in planning and control systems and supply chain coordina-
tion. Essential choices by the controller include the timing and contents of 
decision jobs, i.e., planning and control activities.

For external agents we distinguish between customers and suppliers (I; E, 
F, I, J). Table 5.2 shows how a customer sends an order (F(I|D)) to an internal 
agent of the type controller. The controller in its turn specifies a job defini-
tion (F(C)) for an internal agent who is responsible for the deliverance of the 
requested items (F(M)), with M a parameter for setting the subclass of flow 
items. In the case of a supplier, roles have changed: the controller sends an 
order to a supplier, who has to take care of delivery of the requested items.

5.3.4.4  Dynamics Structure: Agents Executing Jobs

In line with our job-oriented view we assume the execution of jobs by agents 
as the driving force of manufacturing dynamics (VII; D). Whereas the initia-
tion of jobs is considered a conditional event, relying on the presence of a 
job definition and its associated inputs, job completion is bound to a specific 
moment in time.

5.4  Applying the Modeling Framework: 
Enhancing Participation

The basic contribution of the domain-specific modeling framework is to help 
guide the analyst in creating transparent conceptual models, which appeal to 
stakeholders from a specific field of interest. Typically, such models should fos-
ter user participation as an answer to the challenges of conceptual modeling 
that we stressed in the introduction. In this section, we present a case study 
of a repair shop to illustrate this point of view. First we consider the use of the 
framework for conceptual modeling, and illustrate the way it may be used 
for model coding. Next we reflect on the added value of the manufacturing-
specific conceptual modeling framework for model creation and its use.
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5.4.1  Case: r epair Shop

5.4.1.1  Introduction

The case study refers to a simulation model for a small fictitious company 
that repairs engines for pleasure yachts. Facing a competitive market, the 
company considers opportunities for reducing customer delivery times. 
Here the prime focus is on reducing manufacturing lead times, which make 
up the largest part of the delivery times. The example has been used for 
educational purposes and is partly based on van der Zee (2006a, 2006b). The 
choice of the case study is motivated by reasons of clarity and simplicity of 
understanding. More elaborate examples on supply chain design, and plan-
ning systems design—related to industrial cases—can be found in van der 
Zee and Van der Vorst (2005), Van der Vorst et al. (2005), van der Zee et al. 
(2008), and van der Zee (2009).

5.4.1.2  Objectives of the Study

The objectives of the study are to model the dynamic behavior of the repair 
shop and to evaluate the consequences of alternative shop configurations for 
manufacturing lead time performance. Shop configurations are variations 
on the scheduling system, i.e., the choice of priority rule (First Come First 
Serve [FCFS] vs. Shortest Processing Time rule [SPT]), scheduling frequency 
(daily, weekly), and the number of work cells available for repair activities.

5.4.1.3  System Description

The activities of the company are driven by yacht owners that need for 
preventive or corrective maintenance of engines. This is reflected in an 
irregular pattern of engine arrivals at the shop. The initial activity at the 
shop is the inspection of the engine to determine the need for replacement 
parts. The replacement parts are ordered from the companies’ internal 
warehouse (Figure 5.3). Inspection also serves to make a first estimate of 
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Fig ur e 5.3
Repair shop: System description.



Developing Participative Simulation Models 119

the workload associated with an engine, i.e., the time needed to complete 
repair activities. Estimates on workloads are reported to the shop planner. 
The repair station consists of a number of identical and autonomous work 
cells. Each cell is capable of repairing one engine at a time. A planner is 
made responsible for assigning repair jobs to work cells. He makes a new 
schedule on a weekly basis. For scheduling he currently applies a FCFS 
policy. Work orders for new repair jobs are being released by the planner 
to the shop at the start of each planning period and in response to feed 
back of the repair shop on jobs being completed. An alternative scheduling 
policy would be an SPT rule (SPT), whereas planning frequency may be 
changed from weekly to daily.

5.4.1.4  Conceptual Modeling

As a first step in modeling we define a conceptual model for the repair 
shop. For building the conceptual model we used the system description as 
a starting point. In practice, also other sources of information may be rel-
evant, for example, visual observations or drafts of the system under study, 
and domain knowledge. The conceptual model is set up according to the 
high-level definitions developed in our manufacturing domain modeling 
framework. Figure 5.4 displays agent definitions for two key sub systems, 
the planner, and the repair station. Essentially, the planner is responsible 
for two types of jobs: (1) the building of a schedule, and (2) the release of 
job definitions. The first type of job is executed according to a prespecified 
time interval, and uses messages reporting on arriving engines, the actual 
schedule—as kept by the planner—and information on shop status as an 
input. This is reflected in the definition of buffers. The second type of job 
is triggered by the messages of the repair station reporting jobs’ comple-
tion. The repair station is responsible for a single type of job—the repair of 
engines. The repair of an engine is allowed to start in a free work cell, if both 
a job definition is received from the planner, and the engine identified in the 
job definition is available.

5.4.1.5  Model Coding

For coding the repair shop a class library is built concerning the class defini-
tions for flow items, agents and jobs (Figure 5.5). These classes are the essential 
building blocks for the aggregate class RepairShop. In more complex shops it 
may be worthwhile to introduce more aggregate classes representing hierar-
chical levels in modeling. Such classes help to improve model overview. All 
classes are built starting from the basic class library of EM-Plant®* that covers 
the class definitions contained in the folders MaterialFlow, InformationFlow, 
UserInterface, and MUs.

* Registered trademark of Siemens Product Lifecycle Management Software II (DE) GmbH.
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Let us now discuss the implementation of the three main classes FlowItems, 
Agents, and Jobs by giving a number of examples. Subsequently, we will 
relate the classes and model dynamics by considering the internal structure 
and workings of an agent:

Flow items: •	 Flow items are represented in EM-Plant® by “mov-
able units.” We distinguish between four classes of flow items in 
this model: Engine, StatusUpdate, JobDefinition and Scheduler. 
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Conceptual model: Agents Planning and RepairStation.
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Engines model the physical flows between agents. StatusUpdate and 
JobDefinition are used to model feedback and control among agents. 
The Scheduler represents the availability of a person capable of sched-
uling jobs for the RepairStation. Each flow item has multiple attri-
butes. Next to “header data” needed for identification or routing, they 
represent the logical or physical contents of the associated object.
Agents: •	 The model distinguishes between external agents and inter-
nal agents. External agents considered are the customers asking for 
repair of their engines (CustomersIn, CustomersOut). Internal agents 
model the parties involved in the shop. They are associated with 
the physical handling of goods (InspectionStation, RepairStation), 
i.e., engines; data processing (InspectionStation) and control in 
terms of the scheduling and release of jobs (Planning). Internal 
structure and workings for an agent are illustrated by Figure 5.6 
concerning the agents Planning and RepairStation. Basically, the 
agents’ class definitions cover the functionalities introduced in 
Table 5.2. For the agent Planning buffers are foreseen for the stor-
age of incoming messages, originating from the InspectionStation 
estimates of workload) and the RepairStation (job completion). 

Fig ur e 5.5
Class library and class repair shop.
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Fig ur e 5.6
Coded model: Agents Planning and RepairStation.
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Next to these buffers, additional buffers are defined for storing 
the schedule for the RepairStation (Schedule), and to model avail-
ability of the scheduler (InputBufferScheduler). Job execution is 
taken care of by the local intelligence (JobExecutionProc). This con-
cerns two type of jobs: (1) scheduling for the RepairStation—this 
is done periodically, and requires availability of the Scheduler—
and (2) job release in response to feedback from the shop or the 
completion of a new schedule. For the RepairStation buffers con-
sidered are: InputBufferGoods and JobQueue. Transformers are 
TransformerGoods and TransformerSignals. Both are linked by 
local intelligence (JobExecutionProc). The local intelligence takes 
care of calling on the right jobs for realizing the required transfor-
mations. It is activated by the arrival of job definitions and/or goods, 
i.e., engines.
Jobs: •	 In order to make the shop work jobs have been allocated 
to agents. To reflect the different nature of jobs we distinguished 
between several classes of jobs. For example the agent Planning is 
associated with two classes of jobs: (1) Release, i.e., release repair 
jobs, and (2) Scheduling, i.e., set up a new schedule of repair jobs on 
a daily basis. All job classes are implemented in EM-Plant® Methods, 
i.e., programming code.

5.4.2  Added Value of the Domain-Specific Modeling Framework

5.4.2.1  Guidance in Modeling

We found the modeling framework helpful in model creation for the case 
study mentioned above, and also for some related cases, see van der Zee et al. 
(2008) and van der Zee (2009). Helpful, because, instead of having to create an 
implicit view on a manufacturing system of his own, the analyst could start 
from a clear point of reference. Advantages of this approach include time 
and cost savings in model development. Also, it may be easier to express 
stakeholders’ requirements on modeling, as the definition of model elements 
is closer to their mental models of the system under study. Furthermore, we 
found that adapting/reusing models to deal with alternative scenarios is 
relatively easy. For example, consider the following scenarios:

The number of repair stations: the reduction or increase of the num-•	
ber of stations is realized by adapting attributes for the repair station 
as well as for the planner.
Alternative control rules: they can be modeled by adapting the defi-•	
nition of job classes associated with the planning department.
The choice of another planning period: this is realized by consider-•	
ing the time-related behavior of the planning job.
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Model changes like the number of repair stations are facilitated by many 
simulation languages by means of parameter settings of default build-
ing blocks. Implementation of the second and third scenario may imply 
a somewhat greater appeal to the logic of modeling framework, as they 
refer to nonstandard language features. Moreover, where the above sce-
narios do not directly involve the (control) structure for the system, oth-
ers may do so. This may involve the distribution of job classes over the 
agents or the number of agents involved. For example, where the default 
shop model assumes one agent to be responsible for both release and 
scheduling of the repair station, in an alternative setting there may be 
two specialized agents each responsible for one task. This separation of 
tasks resembles different levels of shop control. In a similar way, tasks of, 
for example, work stations may be redistributed. For a major part model 
flexibility with respect to the representation of control is the net result of 
a natural and explicit mapping of concepts—knowing where to look and 
to make the change.

5.4.2.2  Model Completeness and Transparency

Corner stones for building understanding among stakeholders are model 
transparency and model completeness. Model transparency should result 
from the notion of a limited set of elementary manufacturing concepts 
offered by the domain-specific modeling framework. This set should 
assist in building model structures that appeal to the imagination of all 
parties involved in the study. On the other hand, model completeness is 
related to the explicit notion of relevant manufacturing objects and their 
workings.

Let us consider the issue of model transparency in somewhat more 
detail, by comparing modeling as it was done for the case study with ad 
hoc model development. Typically, ad hoc models may violate elemen-
tary decomposition principles, as we found them for manufacturing 
field. Hence, model transparency may be harmed. Here we concentrate 
on the somewhat more “advanced” principles IV–VII, see Table 5.1, given 
our focus on manufacturing systems, including their control. We supply 
some examples, building on previous modeling experiences in industry, 
research, and education:

Intelligent and nonintelligent entities (IV): intelligence, i.e., reason-•	
ing mechanisms to be associated with model entities, are often not 
structured or visualized in a uniform and insightful way. Basic 
reasons may be found in the free formats offered by, for exam-
ple, diagramming techniques, and simulation tools’ internal lan-
guages. They set no a priori restrictions on their use, and the way 
they should be related to the choice of model components and their 
workings. Alternatively, in the manufacturing domain modeling 
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framework, we choose to relate “intelligence” to the local intelli-
gence of agents.
Infrastructure, flows, and jobs (V): in principle, modeling tools for •	
simulation foresee in the possibility for a clear separation of manu-
facturing infrastructure and flow items. We add the explicit notion 
of the job, being the common denominator for identifying and 
describing manufacturing systems’ value-adding activities. This 
is in line with lean manufacturing principles (Womack et al. 1990, 
Goldman et al. 1995). Typically, simulation models restrict the notion 
and display of jobs to those activities, involving the processing and/
or movement of goods and resources.
Modality—physical, information, and control elements (VI): starting •	
point for many conceptual models is the representation of the goods 
flow and its associated resources. In principle, there is nothing wrong 
with that. However, it should not prevent the analyst from consider-
ing information and control elements in sufficient detail. For exam-
ple, decision logistics, i.e. activities associated with  planners and 
schedulers, and the humans or systems supporting them, are often 
“hidden” by dispersing them over the model, instead of displaying 
them in a structured way. Also, modalities may not be identifiable as 
such, as physical activities, data processing, and/or control activities 
are integrated in single building blocks and/or programming code. 
Our modeling framework foresees in a separation of modalities in 
terms of a class hierarchy of flow items, class definitions for agents, 
and specialized agents, which fit in the class hierarchy of agents.
Dynamics—executing jobs (VII): in our view, jobs, i.e., companies’ •	
value-adding activities, are key to manufacturing performance. 
By demanding that jobs are the sole driving mechanism for model 
dynamics, we strive to appeal to practice, and represent manufac-
turing dynamics according to simple and understandable rules. 
Alternatively, ad hoc models may foresee in interventions in event 
control, which do not follow this basic logic. For example, they may 
allow for an activity to be created, adapted, or removed without the 
need for explicit identification as one of the agents’ jobs.

In sum, the modeling framework is meant to be of assistance in making 
models more insightful for users other than the analyst, and even for the 
analyst, building on its conformation to basic decomposition principles. In 
turn, model transparency may facilitate model validation, i.e., face validation 
and creativity in solution finding. It is found that these qualities become even 
more relevant in case of complex business network configurations, such as 
supply chains, and health-care chains (van der Zee and Van der Vorst 2005). 
Obviously, more applications of the framework are required to strengthen 
these findings.
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5.4.2.3  Scope: Field of Application

The modeling framework as described above, and applied to the case study, 
is designed to deal with modeling dynamic systems from the manufactur-
ing field. However, it does not fully cover the field. Essentially, the frame-
work is “machine-oriented,” describing flows as passive objects that are 
operated upon (Kreutzer 1986). An alternative view, not embedded in the 
framework, is the “material-oriented” view, which starts from the flow 
items, which display autonomous behavior in acquiring passive resources. 
In other words, systems that foresee in intelligent behavior of movable enti-
ties may be captured less easily by the modeling framework. Think of, for 
example, (internal) transportation systems or systems where decision logic 
and attributes of personnel are of relevance, like team operated manufac-
turing cells. 

5.4.2.4  Choice of Simulation Software

Above we showed how the modeling framework guided model implemen-
tation in EM-Plant®. In recent research efforts we also considered the use of 
the object-oriented simulation language Taylor EDTM (Van der Vorst et al. 
2005) and ExSpectTM, a tool based on the Petri Nets formalism (van der Zee 
1997, 2009). All tools allowed for a straightforward implementation of the 
elements of the Modeling Framework. In our opinion other choices of a 
tool would be very well possible. However, the choice for a tool that is not 
object-oriented may restrict modeling flexibility, as it lacks the availability 
of concepts such as, for example, inheritance. Furthermore, simulation soft-
ware that is largely parameter driven and lacks an (internal) language for 
specifying entity behavior may be unsuited for implementing conceptual 
models developed using the framework. Typically, this would mean that 
elementary decomposition principles underlying the modeling framework 
are violated, also see the examples given above (Model completeness and 
transparency).

5.5  Conclusions and Directions for Future Research

“The process by which a systems engineer or management scientist derives 
a model of a system he is studying can best be described as an intuitive 
art. Any set of rules for developing models has limited usefulness at best 
and can only serve as a suggested framework or approach” (Shannon 1975). 
In this chapter we recognize the limitations of guidelines for conceptual 
modeling—their relevance primarily is in model structuring—less in detail-
ing model elements. In our view, however, it is especially the notion of the 
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model structure and behavior, in terms of its basic elements and their work-
ings, which may make a difference in stakeholders’ model understanding 
and their participation in decision support. This makes the identification and 
studying of modeling frameworks and the underlying rules for model con-
struction, i.e., decomposition principles, worthwhile.

In this chapter we review a modeling framework for modeling manufac-
turing systems as we proposed it in our earlier work. So far this framework 
has been presented and applied without highlighting the way it has been 
constructed. In this chapter we do so for two reasons: 

To show the underlying •	 approach toward model engineering, which 
is assumed to have a validity that exceeds the manufacturing 
domain
To make the proposed modeling framework for manufacturing sim-•	
ulation to an open architecture amendable for improvements, exten-
sions, and refinements

Model engineering is related to a two phase approach in defining the 
modeling framework. The initial phase foresees in a domain analysis for 
isolating model decomposition principles that apply to a field of appli-
cation. Next, decomposition principles are applied (framed) in defining 
the modeling framework, as a comprehensive set of domain related con-
cepts, expressed in terms of object classes, their relationships and their 
dynamics. 

The two phase approach is applied to the manufacturing field. First a 
set of decomposition principles is defined. Among others, for manufactur-
ing systems it is found important to distinguish between control, infor-
mation and physical elements, and to isolate jobs. Jobs are found relevant 
for representing value-adding activities, not only for physical activities, 
but also in data processing and planning and control. Further, job execu-
tion serves as transparent mechanism for model dynamics, which appeals 
to practice. The application of decomposition principles underpins the set 
up of the modeling framework in terms of a definition of class hierarchies 
for agents, flow items, and jobs, their relationships and their dynamics. 
The notion of the framework’s underpinnings makes it amendable for 
change.

Relevance of a modeling framework should be in model structuring aim-
ing at transparent and complete models, see above. We illustrate this point 
by a case study. First, we show how the modeling framework is helpful in set-
ting up a conceptual model for the case study, and subsequently, the coded 
model. Next we consider added value of the framework in somewhat more 
detail. We find that, next to the initial structuring of the model, the frame-
work is especially helpful in case recoding or restructuring of the model is 
required. Here one may think of, for example, a redefinition and/or redis-
tribution of shop activities. More in particular we study the advantages of 
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the use of the modeling framework for creating transparent models relative 
to ad hoc approaches. Basically, ad hoc approaches may violate elementary 
decomposition principles, like, for example, the separation of the control, 
information and physical elements, and a well-defined notion of jobs and 
their dynamic.

Some interesting directions for future research include the detailing 
and deepening of the engineering approach underlying modeling frame-
works and their application. For example, the approach may be related to 
the concept of reference models (see, for example, Biemans 1990 for the 
manufacturing field), and principles of system engineering and software 
engineering. Given the obtained insights in the engineering approach the 
development of modeling frameworks for domains other than manufactur-
ing may be considered. Another direction may concern the use of the mod-
eling frameworks in facilitating simulation models, which assume higher 
levels of user participation, such as gaming (van der Zee and Slomp 2005, 
2009). Further, the notion of decomposition principles may be helpful in 
setting up libraries of building blocks, or the validation of existing libraries 
to support their conceptual renewal and improvement. Last but not least, 
the modeling framework should be further validated by testing it on real-
world models.
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Appendix Notation

For defining the modeling framework, we adopt the class diagrams as pro-
posed by Booch (1994). Class diagrams describe the class structure of a sys-
tem. They consist of two basic elements: object classes (for example, machines 
and employees) and their mutual associations. Classes are described by their 
name, attributes, and operations (Figure 5.A1). 

Attributes are used to describe the state of the object belonging to a 
class. A change of an attribute value corresponds to a state change for 
the object. Operations refer to the services provided by a class. Operations 
may change the state of an object (for example, withdraw one item from 
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a storage) or just access it (for example, determine the serial number of a 
machine).

The basic type of relationship between two classes is the association, i.e., 
all other types of relationships are considered as refinements of this relation-
ship. Typically, associations are labelled by noun phrases, which describe 
the nature of the relationship. Let us now consider the refinements of the 
association: 

Inheritance denotes a relationship among classes, where a subclass 
shares a part of the structure or behavior defined in one or more 
superclasses. 

Whole/part relationships (aggregation) relate classes to an aggregate 
class. 

Using refers to a client/supplier relationship. Whereas an association 
represents a bidirectional semantic connection, a using relationship 
makes a clear distinction between the client and the provider of cer-
tain services.

Parameterization is represented by a dashed line that connects the 
parameterized class and its concrete class. Parameterization sup-
poses a using relationship with the parameter class.
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6.1 Introduction

The development of a meaningful conceptual model is an essential phase 
for the successful completion of any modeling and simulation project. Such 
a model serves as a crucial bridge between the generalities of the project 
description and the precision required for the development of the simulation 
program that ultimately generates the data that is required for resolving the 
project goals. A conceptual model is a careful blending of abstraction and 
pertinent detail.

In the realm of continuous time dynamic systems, conceptual model devel-
opment typically relies on the language of differential equations, which is 
usually colored by the terminology that is specific to the domain in which the 
underlying dynamic system is embedded (e.g., engineering, thermodynamics, 
aerodynamics, etc.). However when the system under investigation (SUI) falls 
in the realm of discrete-event dynamic systems (DEDS) there is, regrettably, 
no equivalent language that can adequately characterize behavior because of 
the diversity and complexity that pervades this domain. The most straight-
forward means for conceptual modeling is therefore absent. The typical con-
sequence, regrettably, is a leap directly into the intricacies of some computer 
programming environment with the unfortunate result that the program dis-
places the model as the object of discourse. Essential features of the model 
quickly become obscured by the intricacies of the programming environment. 
Furthermore, the resulting artefact (i.e., the simulation program) has minimal 
value if a change in the programming environment becomes necessary.

In this chapter we outline the ABCmod conceptual modeling framework 
(Activity-Based Conceptual modeling), which is an environment for devel-
oping conceptual models for modeling and simulation projects in the DEDS 
domain. Its model building artefacts fall into two categories; namely, entity 
structures and behavior constructs. These relate, respectively, to the structural 
and the behavioral facets of the SUI. Care has been taken to ensure that all 
aspects of the modeling requirements are included in a consistent and trans-
parent manner. In addition to structure and behavior, the framework includes 
a consistent means for characterizing the inputs and the outputs of the SUI that 
have relevance to the project goals. The conceptual modeling process within 
this framework is guided by an underlying discipline but the overall thrust 
is one of informality and intuitive appeal. The constituents of the framework 
can be easily extended on an ad hoc basis when specialized needs arise.

The underlying concepts of ABCmod framework have been continuously 
evolving and earlier versions of this environment have been presented in 
the literature (Arbez and Birta 2007, Birta and Arbez 2007). The presentation 
in this chapter incorporates several important refinements. Included here is 
a clearer and more coherent separation between structural and behavioral 
aspects of the model, as well as an approach for presenting the model at 
both a high level of abstraction in addition to a detailed level. The latter 
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specification can be easily translated into simulation programs based on 
either the event scheduling or process-oriented world views.

Characterization of the SUI’s structure and behavior without concerns 
about programming issues and details is the fundamental intent. We note 
however, that this intent is more restrictive than the perspective adopted 
by some authors. For example, Robinson (2004) includes project objective, 
assumptions, and simplifications as part of the conceptual model.

6.2 Overview and Related Work

There is a variety of ways of packaging the discrete events that are the essence 
of a discrete-event dynamic system. These alternatives lead to distinct mod-
eling approaches (usually called “world views” [Shannon 1975, Overstreet 
and Nance 2004, Banks et al. 2005, Birta and Arbez 2007]). Furthermore, these 
approaches can be conditioned to some degree by the intent of the modeling 
process. Two particular options can be identified in this regard. In one, there 
is a significant alignment with the “simulation engine” (Pidd 2004a) that will 
carry out the execution of the simulation program while in the other the pre-
dominant concern is with clarity of communication among the stakeholders 
in the modeling and simulation project. Conceptual modeling falls squarely 
within the latter option.

The notion of an activity is fundamental to the ABCmod framework. The 
word activity appears in the modeling and simulation literature with a  variety 
of informal meanings (Kreutzer 1986, Pritsker 1986, Pidd 2004a) Within the 
ABCmod context, however, its meaning is very specific; namely, an activity 
is the following:

It is an indivisible unit that characterizes an interaction among entities•	
It is associated with some purposeful task within the SUI•	
It evolves over a nonzero (but normally finite) interval of time.•	

Furthermore, we regard an activity as having four components:

 a. a starting condition expressed in terms of the state of the model that 
must be satisfied before the activity can start

 b. a list of state changes that take place at the instant that the activity starts
 c. a duration that indicates how long the activity will take to complete
 d. a list of state changes that take place when the activity terminates

We refer to this view of an activity as the inclusive view. The activity  construct 
in the ABCmod framework encapsulates the inclusive view. This perspective 
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of an activity is by no means a standard within the modeling and simulation 
literature but it has previously appeared (e.g., Hills 1973).

While an (inclusive) activity-oriented modeling approach may have its 
limitations within the context of simulation program implementation, it 
needs to be stressed that these difficulties do not extend into a conceptual 
modeling context. On the contrary, as will be shown in the discussion of 
the ABCmod framework that follows, this view is very well suited to the 
conceptual modeling task. It provides a meaningful and intuitively appeal-
ing approach for packaging the events that constitute behavior in the DEDS 
realm. An appreciation for these important properties by Pidd (2004b) can 
be reasonably inferred from his enthusiasm expressed for the closely related 
three phase approach that is aligned with simulation program design 
(see below).

We summarize below some of the features of this framework that will be 
explored further in the following sections of this chapter.

 i. The ABCmod framework provides a comprehensive environment 
that can accommodate arbitrary complexity within the SUI. There 
are, for example, integrated mechanisms to handle input, output, and 
the preemption or interruption of activities. Its basic model building 
constructs can be easily extended when specialized needs arise.

 ii. A clear distinction is maintained between structural and behavioral 
aspects of the model. Both graphical and textural formats are used 
to present each of these principal facets of model construction.

 iii. Behavior is formulated both at a high level of abstraction (in a graph-
ical format) and at a detailed level (in a structured and intuitively 
straightforward text-based format).

 iv. While the notion of an (inclusive) activity is central to the ABCmod 
framework, it is acknowledged that there are important aspects of 
behavior that fall outside the scope of this notion. An associated notion 
of an “action” extends the ABCmod behavioral modeling landscape.

 v. The notion of instances of both entity structures and activity con-
structs is a prevailing perspective in ABCmod conceptual model 
development.

 vi. Time management is outside the scope of the ABCmod conceptual 
modeling process.

 vii. The notion of “executing” an ABCmod conceptual model is not 
meaningful (see in particular the previous point), thus there can be 
no generation of output. It is nevertheless essential for any concep-
tual model to include a comprehensive specification of the output 
that is required for purposes of achieving the goals of the project. 
Mechanisms for dealing with this critical facet of a conceptual model 
are integrated into the ABCmod environment.
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The inclusive activity notion has not been especially useful from the point of 
view of simulation engine design where the focus is on logic flow,  specifically 
the management of lists of events that must take place in a correct temporal 
sequence. Strategies have, nevertheless, evolved from this underlying notion. 
The two most common are the activity-scanning approach (often called the 
two-phase approach [Buxton and Laski 1962]) and an extension called the 
three-phase approach (Tocher 1963). In both these approaches the four facets 
of the inclusive view of an activity are implicitly recognized but are sepa-
rated and reconstructed into alternate constructs that are more useful from 
a software perspective. Nevertheless the word “activity” is usually retained 
but its meaning is often unclear and/or curious (e.g., it is not uncommon to 
read that “an activity is an event that    ”).

We note finally that a correspondence might be assumed between our 
 behavior diagram (see (iii) above) and the Activity Cycle Diagram (ACD) 
that can be found in the modeling and simulation literature (e.g., Kreutzer 
1986, Pidd 2004a). Both of these diagrams are formed from a collection of 
life-cycle diagrams that are specific to an entity class. A simple example of 
an ABCmod life-cycle  diagram is given in Figure 6.1, which is intended to 
show that an entity associated with this life-cycle diagram could flow either 
to activity Act2 or activity Act3 upon completion of its engagement in activ-
ity Act1.

The rectangles in our life-cycle diagram represent activities (more cor-
rectly activity instances) as per the inclusive view outlined earlier. In the 
ACD context, rectangles are often called “active states” (Kreutzer 1986, Pidd, 
2004a) and at best (depending on the author), they encompass only parts (b) 
and (c) of the inclusive activity’s four constituents. The circle in Figure 6.1 
is intended simply to represent a delay (of uncertain length) encountered 
by an entity instance that arises because the conditions for initialization of 
a subsequent activity instance in which it will be engaged may not yet be 
present. In the ACD context, the circle (usually called a “dead state” [Pidd 
2004a]) often corresponds to a queue. Furthermore. there is frequently an 
implicit suggestion that the ACD reflects structural properties of the SUI. 
There is no structural implication associated with the ABCmod behavior 
diagram.

Act1

Act2 Act3

Fig ur e 6.1
ABCmod life-cycle diagram.
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6.3 Constituents of the ABCmod Framework

6.3.1 Overview

A representation (i.e., abstraction) of the SUI’s behavior is the underlying 
goal of conceptual modeling. This task can be regarded as the task of charac-
terizing the interactions overtime that take place among the  collection of ele-
ments that populate the space of the SUI. The important implication here is 
that the characterization of behavior cannot be undertaken until  appropriate 
surrogates for these elements have been identified. In other words there are 
two main collections of modeling artefacts that are required to carry out 
the conceptual modeling process. The first deals with the abstraction of the 
 elements that are interacting within the SUI and the second focuses on the 
nature of these interactions. These two requirements correspond,  respectively, 
to the structural and the  behavioral aspects of the model.

Within an ABCmod conceptual model, the surrogates for the elements of 
interest within the SUI are entities that are derived from a collection of entity 
structures that are formulated to accommodate the specific nature of the SUI 
and the goals of the project. The behavior of the SUI, on the other hand, 
is formulated in terms of a collection of behavior constructs. These fall into 
two categories called activity constructs and action constructs. An activity con-
struct in an ABCmod conceptual model represents a specific unit of behavior 
that is judged to have relevance to the model building task. Such a construct 
can be viewed as an encapsulation of some relevant dynamic relationships 
among the entities. These relationships typically take the form of interac-
tions among the entities as they react to, and give rise to, the occurrence of 
events. The identification of these units of behavior is the task of the concep-
tual model builder and is largely driven by the project goals.

6.3.2 exploring Structural and behavioral r equirements

By way of setting the stage for the presentation of the ABCmod framework, 
we outline here a facet of a particular discrete-event dynamic system. With 
some elaboration the outline could evolve into a modeling and simulation 
project but that is not of concern in this discussion. The intent is simply to 
illustrate a variety of features that are typical of the DEDS domain with a 
view toward identifying some possible contents of a toolbox for conceptual 
model construction.

We consider the operation of a department store. Customers arrive and gen-
erally intend to make one or more purchases at various merchandise areas 
(departments) of the store. At each such area a customer browses/shops, pos-
sibly makes one or more selections and if so then pays for them at the service 
desk located within the area before moving on to the next merchandize area. 
Upon completion of the shopping task the customer leaves the store.
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In this fragment of a DEDS description, each customer corresponds to an 
entity that we might regard as a type of consumer entity (note that such 
a generalization is, in fact, an abstraction step). In a similar way we could 
regard each of the service desks within the various merchandize areas as a 
resource entity (another abstraction) inasmuch as the consumer entities (the 
customers) need to access these resource entities in order to complete their 
purchase transactions (these transactions are, after all, the purpose of their 
visit to the department store). Because the service function at the resource 
entity (i.e., service desk) has a finite duration there is a possibility that some 
consumer entities may not receive immediate attention upon arrival at the 
resource because it is busy serving other customers. Hence it is reasonable to 
associate a queue entity with each resource entity where consumer entities 
can wait for their turn to access the resource.

The merchandize areas where customers evaluate merchandize are dis-
tinctive. On one hand, each can be regarded simply as a “holding” area for a 
collection of consumer entities (i.e., the customers). With this perspective, a 
merchandize area can be represented as a particular type of aggregate that 
we call a group (an unordered collection of entities). On the other hand, a 
merchandize area is a prerequisite for an activity called shopping. Hence, it 
has features of a resource. In effect, then, the merchandize areas within the 
department store have a dual role. This notion of duality is explored further 
in the discussions that follow.

As suggested above, the ABCmod framework recognizes two types of aggre-
gate; namely queues and groups. Entities within a group are not organized in 
a disciplined way as in the case of a queue but rather simply form an identifi-
able collection. Note furthermore that the discipline that is inherent in a queue 
introduces two important features. Both of these arise from the fact that there 
is a natural exit mechanism for the entities in a queue; namely, availability of 
access to the resource that is associated with the queue. As a consequence the 
time spent by an entity’s membership in a queue is implicitly established and 
the destination of an entity that departs from a queue is likewise implicitly 
established. In contrast, neither the time spent by an entity within a group nor 
its subsequent destination is implicit in the membership property.

In the discussion above we have transformed various elements of the SUI 
(e.g., customers, merchandise areas, service desks, and customer lines wait-
ing for service) into generic elements that have broader, more general, appli-
cability (consumer entities, group entities, resource entities, queue entities). 
This is an important abstraction step and lies at the core of the conceptual 
modeling process. These various generic entities that we have introduced are 
among the model building artefacts that are explored in greater detail in the 
discussion that follows.

It needs to be appreciated however that the mapping process from ele-
ments in the SUI to generic elements is not always as straightforward as 
the preceding discussion might suggest. Consider, for example, a set of 
machines within a manufacturing plant that are subject to failure. A team of 
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maintenance personnel is available to carry out repairs. While the machines 
are operating, they can certainly be viewed as resource entities in the man-
ufacturing operation but when they fail they become consumer entities 
because they need the service function of the maintenance team. In other 
words, the machines can shift from one role to another. Such circumstances 
are not uncommon and some appropriate generic artefact in our modeling 
toolbox is essential.

It is usually possible to formulate a graphical representation of the impor-
tant structural components of the SUI for which a model is being constructed; 
i.e. a schematic diagram. Some aspects of behavior may also be incorporated. 
The result can provide a useful integrated view of the various components 
that need to be incorporated in the model and some insights into how they 
interact. Figure 6.2 shows such a representation for the department store as 
outlined above.

The arrows indicate movement of the customers. The dark arrows indicate 
departure from the department store. The partially shaded arrows indicate 
movement from one merchandize area to another and the nonshaded arrows 
show movement within a particular department.

The discussion above has illustrated some structural elements that provide 
a foundation for the modeling process. We explore this example further, but 
now from the perspective of behavior. A useful way to begin is to exam-
ine how various shoppers in the department store might interact. Figure 6.3 
shows a possible interaction scenario for three shoppers called A, B, and C. 
They arrive at times A0, B0, and C0, respectively, and leave the store at times 
A5, B7, and C3, respectively.

There are a number of important observations that can be made about 
Figure 6.3. Notice, in particular, that some type of transition occurs at each of 
the time points A0 through A5, B0 through B7 and C0 through C3. These transi-
tions, in fact, represent changes that must be captured in the model building 
process. Notice also that some of these time points are coincident; for exam-
ple A2 = B2, A3 = C2 and A5 = B4, suggesting that several different changes can 
occur at the same moment in time. It is also clear from Figure 6.3 that there 
are intervals of time during which at least some of these three shoppers are 
engaged in the same activity; for example between B0 and B1 all three cus-
tomers are browsing in Area 1 and between C1 and A2 customers A and C 
are waiting in Queue 1.

We have previously noted that each of the service desks can be regarded 
as a resource and shoppers need to acquire (“seize”) this resource in order 
to pay for items being purchased before moving on to another merchan-
dise area. The payment activity at a service desk has several noteworthy 
features:

 i. There is a precondition that must be TRUE before this service activ-
ity can begin (the server must be available and there must be a shop-
per seeking to carry out a payment transaction).
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 ii. The service activity carries out a purposeful task and has duration; 
i.e., it extends over an interval of time.

 iii. Changes take place when the service function is completed (e.g., 
at time A3 = C2 the number of shoppers in merchandize Area 3 

Customer line 1 (queue)

Merchandise area 1
(resource group)

(queue)

Customers
Dept. 3

Dept. 2

Dept. 1

Customers moving between shopping
areas without making purchases

Customer line 2 (queue)

Service
desk 1

(resource)

Service
desk 2

(resource) 
Merchandise area 2

(resource group)

Service
desk 3

(resource)

Customer line 3 (queue)
Merchandise area 3

(resource group) 

Fig ur e 6.2
A schematic view of the conceptual model for department store shoppers. (Based on Birta, L.G. 
and Arbez, G., Modeling and Simulation: Exploring Dynamic System Behavior, Springer, London, 
Fig. 4.1, p. 99, 2007. With kind permission of Springer Science and Business Media.)
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increases by one and the number in the queue in front of service 
desk 1 decreases by one).

These features are directly reflected in one of the main ABCmod constructs 
used to characterize behavior. This will become apparent in the discussion 
of Section 6.3.4 below.

From the perspective of the requirements of a modeling and simulation 
project, the description given above for the department store shoppers is 
incomplete in several respects. Many details need to be provided; for exam-
ple, how is the set of merchandise areas that a particular customer visits 
selected? What is the order of the visitations? And how many servers are 
assigned to the service desks? Can a particular customer balk; i.e., not make 
any purchase at one or more of the assigned merchandise areas and if so, 
then under what circumstances? The information for dealing with these 
questions is not provided in the descriptive fragment that is given but would 
most certainly be necessary before a meaningful conceptual model could be 
formulated. Indeed one of the important functions of the conceptual model-
ing process is to reveal the absence of such essential details.

Likewise several data models need to be determined. Included here would 
be the characterization of customer arrival rates and service times at the 
service desks, allocation of the shopping areas to be visited by the arriving 
customers and the characterization of the duration of the browsing phase at 
each merchandise area, etc. It is especially important to observe that these 
various data models will provide the basis for generating events that give 
rise to change. For example, the event associated with the end of a particular 
customer’s browsing phase will generally (but not necessarily) result in that 
customer’s relocation into the queue associated with the service desk of that 
service area.

The intent of the discussion in this section has been to explore some of 
the important facets of the modeling process within the DEDS domain, at 
least insofar as they are reflected in the particular problem context that was 
considered. This overview will serve as a foundation for the discussion that 
follows.

6.3.3 Model Structure

6.3.3.1 Entity Structures and Entities

As indicated earlier, a necessary constituent of any conceptual modeling 
 process is a collection of entities that serve as surrogates for those elements 
in the SUI that have relevance to model development. These entities are 
manipulated in some appropriate manner over the course of the observa-
tion  interval. While this is most certainly true there remain fundamental 
questions such as the properties of these entities and the manner in which 
they acquire their existence. Within the ABCmod framework the notion of an 
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entity has its origins in the more fundamental notion of an entity structure. 
In this section we outline the relationship between these two notions and 
explore their important features. A particularly significant outcome is insight 
that emerges about the state variables of an ABCmod conceptual model.

Each of the entity structures within an ABCmod conceptual model serves 
as a specification for one or more entities. Such a specification is an m-tuple 
of attribute names together with a description of each attribute. An entity is 
a named m-tuple of values where the name is derived from the underlying 
entity structure and the values are assignments to the attributes of that entity 
structure. Such an entity is said to be derived from the entity structure.

It follows then that one of the important initial steps in the development of 
a conceptual model for any particular modeling and simulation project is the 
identification of an appropriate collection of such entity structures; i.e., one 
that accommodates the modeling requirements of the project. This collection, 
in effect, defines the structure of the conceptual model being constructed. 
As will become apparent in Section 6.3.4, the entities that are derived from 
these entity structures are fundamental in behavior specification.

Each entity structure has two properties, which are called role and scope. 
The notion of role is intended simply to provide a suggestive (i.e., intuitive) 
link between the features of the SUI and the conceptual model building 
environment provided by the ABCmod framework. The value assigned to 
role reflects the model builder’s view of the entity structure in question, or 
more correctly, the entity (or entities) that are derived from that entity struc-
ture. There are four basic alternatives (i.e., values for role) that align with a 
wide variety of circumstances; namely the following:

Resource•	 : when a derived entity provides a service.
Consumer•	 : when a derived entity seeks one or more services.
Queue•	 : when a derived entity serves as the means for maintaining 
an ordered collection of other entities. (The number of such entities 
that are accommodated at any point in time normally varies and 
often there is a maximum capacity; these values are typically main-
tained in attributes associated with the underlying Queue entity 
structure.)
Group•	 : when a derived entity serves as the means for maintaining an 
unordered collection of other entities. (The number of such entities 
that are accommodated at any point in time normally varies and 
often there is a maximum capacity; these values are typically main-
tained in attributes associated with the underlying Group entity 
structure.)

There is no reason to believe, however, that these four alternatives will nec-
essarily encompass all possible circumstances. Note, for example, that it is 
often the case that an entity structure’s role may exhibit duality. Consider, 
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for example, an entity intended to represent a machine that periodically 
breaks down and requires repair. While it is operating, the machine pro-
vides a service and hence can be viewed as a resource, but when it breaks 
down it requires the service of maintenance personnel and hence becomes 
a  consumer. Such situations where the value of role can vary over the course 
of the observation interval are not uncommon and we view the role in such a 
case as having sequential duality. The value assigned to role in this example 
would be Resource Consumer.

There is likewise the possibility of role having simultaneous  duality. This 
would occur, for example, in the case of a service counter at fast food out-
let. The counter can be regarded as a Group because it maintains a collection 
(unordered) of customers being served. But, at the same time, it can be regarded 
as a Resource because customers must acquire a position at the counter (i.e., 
within the Group) as a prerequisite for the activity of  getting served. In this 
situation the dual value of Resource Group would be assigned to role.

In the discussions that follow we shall frequently use phrases such as: “the 
resource entity structure called X” to mean: “the role of the entity structure 
called X is Resource.” In a similar way, the phrase “consumer entity” is a refer-
ence to an entity derived from an entity structure whose role is Consumer.

The scope of an entity structure reflects upon the number and permanence 
of the entities that are derived from it. In the case where exactly one entity 
is derived from an entity structure, that entity structure is said to have 
scope = Unary. When an entity structure yields a finite number, N > 1, of 
derived entities then its scope is Set[N]; i.e., scope = Set[N]. If the number of 
derived entities of an entity structure is indeterminate, then scope = Class.

In the case where the scope of an entity structure is either Unary or Set[N], 
the derived entities remain within the realm of the model over the entire 
observation interval. In the case where scope = Class, the derived entities 
typically have a transient existence (i.e., they can not only be created but they 
can likewise be eliminated). These entities have no explicit identifier but can, 
nevertheless, be referenced (as discussed in the following section). They are 
usually called instances of the underlying entity structure.

Each entity structure in an ABCmod conceptual model has an identifier 
that reflects aspects of its two properties (namely, role and scope). Likewise 
each entity can be accessed by either an identifier (in the case where 
scope = Unary or Set[N]) or by reference (in the case where scope = Class). 
These identifiers/references have a format that is derived from the identifier 
of the underlying entity structure. These naming conventions are outlined 
in the following section.

6.3.3.2 Identifiers for Entity Structures and Entities

A particular format that incorporates pertinent information has been adopted 
for creating identifiers for entity structures. The intent here is to facilitate 
interpretation when references to the entity structure occur. The identifier 
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appends type information to a name for the entity structure that is meaning-
ful to the model builder. The general format for this identifier is:

 Type: Name

where: Type = {role} {scope} and
role either has a value from the set Sr = {Resource, Consumer, Queue, Group} 

or has a composite value of the form* R1R2 where each of R1 and R2 is 
a member of Sr with R1 ≠ R2

scope has a value from the set Sb = {Unary, Set[N], Class} where N > 1.
Name is some meaningful name assigned to the entity structure

For example, the entity structure identifier: “Resource Set[2]: Tugboat” would 
indicate a resource entity structure called Tugboat from which two entities are 
derived. Alternately, “Resource Unary: Tugboat” indicates a Resource entity 
structure (called Tugboat) from which a single entity is derived. Continuing 
with this example, we shall frequently use phrases such as “a Tugboat entity” 
to imply an entity derived from an entity structure called Tugboat. Note 
however that this reference does not reveal the role or scope of the underlying 
entity structure.

The identifier for an entity has a format that reflects the properties of the 
underlying entity structure. For the case where scope = Unary the unique 
entity derived from the entity structure has the identifier X.Name where X is 
one of R, C, Q, G (or some combination of these alternatives) depending on 
the value of role; i.e., X = R if role = Resource, X = C if role = Consumer, X = RG 
if role = Resource Group, etc. and Name is the name assigned to the underly-
ing entity structure. When the underlying entity structure has scope = Set[N], 
we use X.Name[j] where j (0 ≤ j ≤ N−1) designates the jth entity derived from 
the entity structure. When scope = Class, iX.Name is simply a reference to 
some particular instance of the entity structure that is relevant to the context 
under consideration. It does not serve as a unique identifier.

We note finally that within the ABCmod framework entity identifiers are 
regarded as having global scope. This means that they can be referenced 
from all behavior construct instances.

6.3.3.3 Attributes

The identification of appropriate attributes for an entity is governed to a 
large extent by the requirements that emerge in the process of characterizing 
behavior. This characterization, within the ABCmod framework, is carried 
out using a collection of “behavior constructs” that react to and manipulate 

* In section 6.3.3.1 it was pointed out that there are situations where role may have either sequential 
or simultaneous duality. The composite value indicated here accommodates such a  possibility. 
In principle, the form could have three components and the intent would be analogous.
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entities. Inasmuch as entities reflect attribute values, it follows that the selec-
tion of the attributes themselves (in the formulation of the underlying entity 
structures) is the fundamental issue. Some important insight about the selec-
tion of appropriate attributes can be obtained by examining typical attribute 
requirements for several entity categories.

We begin with an examination of consumer entity instances (cei’s); i.e., enti-
ties derived from an entity structure with role = Consumer and scope = Class. 
In many circumstances, such cei’s can be viewed as flowing among the vari-
ous aggregate entities (Queue entities and Group entities) and the Resource 
entities that exist within the model. An essential requirement therefore is to 
track both the existence and the status of these entities to ensure that they 
can be processed correctly by the rules that govern the model’s behavior. In 
addition, there may be a particular trail of data produced by the cei’s that 
is relevant to the output requirements that are implicit in the project goals. 
These various requirements suggest typical attributes for entity structures 
having scope = Class.

For example, the cei’s derived from a particular entity structure may have 
properties or features that have direct relevance to the manner in which they 
are treated by the rules of behavior. In this regard a possible attribute for 
the entity structure could be “Size,” which may have a one of three values 
(SMALL, MEDIUM, or LARGE) or alternately, “Priority,” which may have 
one of two values (HIGH or LOW).

Observe also that output requirements arising from the project goals often 
need data that must be collected about the way that cei’s have progressed 
through the model. Frequently this requirement is for some type of elapsed 
time measurement. For example, it may be required to determine the aver-
age time spent waiting for service at a particular resource entity by cei’s that 
 utilize that resource. An attribute introduced for this purpose could function 
as a time stamp storing the value of time, t, when the waiting period begins. 
A data value placed in a prescribed data set would then be computed as the 
difference between the value of time when the waiting period ends and the 
time stamp.

As previously suggested, a perspective that is frequently appropriate is 
one where cei’s flow from Resource entity to Resource entity accessing the 
services that are provided by them. At any particular point in time, however, 
access to a particular Resource entity may not be possible because it is already 
engaged (busy) or is otherwise not available (e.g., out of service because of a 
temporary failure). Such circumstances are normally handled by connecting 
the entity to an aggregate entity that is associated with the Resource entity 
where they can wait until access to the Resource entity becomes possible.

The most common aggregate entity is a Queue entity (i.e., an entity derived 
from an entity structure for which role = Queue). Connecting a cei to a Queue 
entity corresponds to placing the cei in that Queue entity. From this observa-
tion it is reasonable to suggest two particular attributes for any Queue entity 
structure within the model; namely, List and N. Here List serves to store the 
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cei’s that are enqueued in a Queue entity derived from that Queue entity 
structure and N is the number of entries in that list.

It needs to be stressed that the above selection of attributes for character-
izing a Queue entity structure is intended simply to be suggestive and is not 
necessarily adequate for all situations. In some cases, for example, it may 
be appropriate to include an attribute that permits referencing the specific 
Resource entity with which an entity (or entities) derived from the Queue 
entity structure are associated.

The characterization of a Group entity structure is similar to that of a 
Queue entity structure but there is an important difference. Consumer entity 
instances are often placed into a Group entity as in the case of a Queue entity, 
however there is no intrinsic ordering discipline. On the basis of the obser-
vations above, the attributes for a Group entity structure could reasonably 
include List and N where List is the list of the cei’s connected to the Group 
entity and N is the number of entries in that list. In some situations it may 
be useful to include an attribute that allows some variation in the capacity 
of the Group entity. This is very much context dependent and provides a 
further illustration of the need to tailor the characterizing attributes of entity 
structures to the specific requirements of a project.

Consider now a Resource entity. One perspective that could be taken is to 
regard a cei that is being serviced by a Resource entity as being incorporated 
into it. To support such a perspective the underlying Resource entity struc-
ture would have to have an attribute for this purpose (possibly called: Client). 
In many circumstances it is relevant to have an attribute that reflects the sta-
tus of an entity that is derived from an underlying Resource entity structure. 
Such an attribute might, for example, be called Busy where the implication is 
that the assigned binary value indicates whether or not the Resource entity is 
busy, i.e., is carrying out its intended function. When the status of a Resource 
entity may assume more than two values, it may be convenient to introduce 
an attribute called Status that can acquire these multiple values. For example, 
Status could assume the values IDLE, BUSY, or BROKEN.

A tabular format is used for the specification of all entity structures in an 
ABCmod conceptual model. The template for this specification is given in 
Table 6.1 where Type is: {role} {scope} as outlined earlier.

As will become apparent in section 6.3.4, the behavior constructs that cap-
ture the behavior of the SUI react to and modify the attribute values that are 
encapsulated in entities. A means for referencing these values is therefore 
essential. Our convention in this regard is closely related to the convention 
described above for identifying entity structures. In particular, the conven-
tion endeavors to clearly reveal the entity structure from which the entity in 
question is derived. Consider an entity structure with scope = Class. By our 
previously outlined convention, the identifier for an entity instance derived 
from this entity structure has the generic form:

 iX.Name
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where X is the value of role and is one of (R, C, Q, G, YZ), where each of Y 
and Z can assume one of (R, C, Q, G) and Y ≠ Z. If Attr is an attribute of this 
entity, then we use

 iX.Name.Attr

as a reference to that particular attribute within the entity instance.
Alternately suppose we consider an entity structure with scope = Set[N]. 

The generic identifier for the jth member of this entity structure is:

 X.Name[j]

Again, if Attr is an attribute of this entity structure, then we use

 X.Name[j].Attr

as a reference to that particular attribute within the entity member in 
question.

6.3.3.4 State Variables

References to the state of a model are an important and integral part of the 
discussions surrounding the model development process. Inasmuch as the 
model’s state at time t is simply the value of its state variables at time t, a 
prerequisite for such discussions is a clear understanding of what consti-
tutes the set of state variables for the model. If the model’s state variables are 
incorrectly identified then aspects of the model’s development can become 
muddled and vague and hence error prone.

Notwithstanding the above, it needs to be recognized that an ABCmod 
conceptual model lacks a feature that precludes the specification of a fully 
inclusive set of state variables. We have previously pointed out (Section 6.1) 
that the ABCmod environment does not address the issue of time manage-
ment. It is simply assumed that there is a mechanism that moves the time 

TAble 6.1

Template for Specifying an Entity Structure

Type: Name

A description of the entity structure called Name

Attributes Description

AttributeName1 Description of the attribute called AttributeName1
AttributeName2 Description of the attribute called AttributeName2
. .
. .
AtributeNamen. Description of the attribute called AttributeNamen
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variable, t, across the observation interval, starting at its left boundary. 
While such a traversal mechanism is essential for creating an executable 
model it is not essential for characterizing the relevant behavior properties 
of the SUI, which is, after all, the intent of the conceptual modeling process. 
Nevertheless, there are necessarily aspects of any time management proce-
dure that will impact upon the correct identification of all state variables and 
because of this our discussion in this section is restricted to the identification 
of a set of variables that meets most, but not all, the requirements of a com-
plete state variable collection.

The entity attributes can, in fact, be aligned with the model’s state variables. 
This follows from the observation that the information embedded in them 
is needed in order to satisfy the classical requirements for state  variables 
(Padulo and Arbib 1974, Birta and Arbez 2007). Accordingly all references 
to the state variables of an ABCmod conceptual model in the discussions 
that follow should be interpreted as a reference to the attributes of the mod-
el’s entities. Correspondingly, a reference to the state of the model at time t 
should be interpreted as the value of the attributes of its entities at time t.

6.3.4 Model behavior

Our concern now is with presenting the constructs used within the ABCmod 
framework to characterize behavior (i.e., the model’s evolution over time). 
We begin by noting that the behavior of an ABCmod conceptual model is, for 
the most part, aligned with changing attribute values. These changes take 
place in concert with the traversal of the time variable, t, across the observa-
tion interval and are a consequence of the occurrence of specific conditions. 
The identification of these conditions and the attribute value changes that 
they precipitate are fundamental facets of behavior characterization. Recall 
also that the collection of entities that exist within the conceptual model can 
vary over the course of the observation interval as entities enter and leave the 
model. When such changes take place they clearly introduce another source 
of changing attribute values.

An important but implicit assumption relating to the variable t is the 
assumption that within all sections of any ABCmod conceptual model, the 
units associated with t are the same, for example seconds, days, years, and 
the like.

The characterization of behavior in the ABCmod framework is carried out 
using a collection of behavior constructs. These fall into two categories called 
activity constructs and action constructs. These are described in the discussion 
that follows.

6.3.4.1 Activity Constructs

The ABCmod activity construct provides the main modeling artefact for 
characterizing change, or equivalently, behavior. In general, each activity 
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construct within an ABCmod conceptual model serves to encapsulate a unit 
of behavior that has been identified as having relevance from the perspective 
of the project goals. The notion of unit here is intended to suggest minimal-
ity; in other words, an activity construct should be viewed as atomic in the 
sense that it captures an aspect of the model’s behavior that is not amenable 
to subdivision (at least from the perspective taken by the model builder). An 
activity construct can also be regarded as an abstraction of some purposeful 
task that takes place within the SUI. Its achievement invariably requires at 
least one resource entity and usually involves interaction with other entities. 
The key consequence of both the initiation and the completion of this task 
generally take the form of changes in the value of some of the state variables 
(i.e., attributes) within the model.

It is important to note that each activity construct captures a particular 
type of task. Many instances of a particular activity construct can be simul-
taneously in progress. For example, in the department store it would be fea-
sible for more than one customer to be served at the same desk. In this case 
several instances of the activity construct formulated to encapsulate the pay-
ment task could occur simultaneously.

An activity construct generally has three phases; namely, an initial phase, 
a duration, and a terminal phase. Both the initial phase and the terminal 
phase unfold instantaneously (i.e., they consume no [simulated] time). The 
duration phase carries the important implication that once an instance of 
an activity construct (i.e., an activity instance) has become energized, it can-
not end until there has been an elapse of some number of time units. Note, 
however, that this duration need not map onto a contiguous time interval but 
may instead correspond to a collection of disjoint intervals.

The notion of an event is fundamental in any model building discussion 
within the DEDS domain. In spite of this importance, a universally accepted 
definition for this notion has proven to be elusive. Within the ABCmod 
framework, we regard an event simply as a change in the status of the model 
that is characterized by a Status Change Specification (SCS). An SCS gener-
ally includes, but is not restricted to, a change in the model’s state. An event 
begins and ends at the same point in (simulated) time and consequently all 
changes specified in its associated SCS occur simultaneously. In most cases 
there is an event associated with both the initial phase and the terminal 
phase of an activity construct.

The circumstances that cause an event’s occurrence are clearly of funda-
mental importance to its proper characterization. Such circumstances fall 
into two broad categories. An event is said to be conditional if its occurrence 
depends on the value of one or more state and/or input variables. On the 
other hand, if the event’s occurrence takes place at some predefined value of 
time, t, independent of the model’s state or its inputs, then the event is said 
to be scheduled.

The initial phase of an activity construct generally includes a pre-
condition and a starting event. The precondition is a prescribed logical 
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expression. Although there are some important exceptions, the precondi-
tion is generally formulated in terms of the various state variables and/
or input variables within the model. The starting event occurs when the 
precondition acquires a TRUE value. Hence the starting event of an activ-
ity construct corresponds to a conditional event. Furthermore, the SCS for 
the starting event always includes a state variable change that inhibits an 
immediate reactivation of that instance of the activity construct (in other 
words, a change that gives that precondition a FALSE value). Notice that 
the implication here is that when a precondition is present, a starting event 
is a mandatory constituent for an activity construct. Note also that nothing 
in the above precludes the possibility of simultaneous multiple instances of 
an activity construct.

The event that is associated with the terminal phase of an activity instance 
(i.e., its terminating event) occurs immediately upon the completion of its 
duration (hence it can be regarded as a scheduled event).

The state changes embedded in the SCS of either a starting event or a ter-
minating event may cause preconditions of several activity constructs to 
become TRUE thereby initiating instances of them. This demonstrates that 
multiple activity instances within the model can be simultaneously in prog-
ress. Note that although a terminating event is typically present, it is not a 
mandatory component of an activity construct.

When an activity instance is initiated it has a tentative duration whose 
length is specified in the underlying construct’s specification. This length is 
frequently established via a data module (see Section 6.3.7), which, therefore, 
implies that a data modeling stage has been completed. In the most com-
mon circumstance, the duration, Δ, of an activity instance does not change 
once it is initiated. Furthermore it typically maps onto a continuous time 
interval. In these circumstances the termination time, tend, of that instance is 
predetermined when it begins; that is, tend = (tstart + Δ) where tstart is the value 
of time, t, when the activity construct’s precondition acquired a TRUE value 
and an instance was initiated. The terminating event (if present) occurs at 
time t = tend.

Several types of activity constructs are provided in the ABCmod frame-
work. They share most of the features that have been outlined above but nev-
ertheless have distinctive aspects that accommodate special requirements. 
Each type of activity construct is formulated using a template and these tem-
plates, together with a brief outline of distinctive aspects, are presented in 
the discussion that follows.

Activity: This is the most fundamental of the activity constructs. Each occur-
rence of this construct in the model has a name and is organized according 
to a template whose format is given in Table 6.2. Recall that a SCS usually 
includes (but is not restricted to) the identification of required changes in 
value to some collection of state variables.

Our convention of regarding an activity construct as an atomic unit of 
behavior precludes embedding within it a secondary behavior unit even 
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when it may be closely related. One such situation occurs when one behavior 
unit directly follows upon completion of another without the need to “seize” 
a further resource. Our notion of a Triggered Activity provides the means for 
handling such situations.

As an example, consider a port where a tugboat is required to move a 
freighter from the harbor entrance to an available berth where a loading 
(or unloading) operation can immediately begin. Here the berthing and the 
loading operations each map onto activity constructs but the latter is distinc-
tive because the required resource (i.e., the berth) is already available when 
the berthing is completed and hence the loading can immediately begin. It 
is because of this absence of a precondition that the loading operation maps 
onto a Triggered Activity in our ABCmod framework.

Triggered Activity: The distinguishing feature of a Triggered Activity is that 
its initiation is not established by a precondition but rather by an explicit 
reference to it within the terminating event of some other activity construct. 
Such a reference has the form: TA.Name where the “TA” prefix emphasizes 
that Name is a reference to a Triggered Activity. Note that this shows that an 
SCS can be more than simply a collection of specifications for state variable 
changes inasmuch as it can also include a reference to a particular Triggered 
Activity, which, in turn, serves to initiate an instance of that construct. The 
template for the Triggered Activity is given in Table 6.3.

We have previously indicated that an activity construct encapsulates a unit 
of behavior within the SUI. The flow of this behavior, in the context of a 
specific activity instance may, however, be subjected to an intervention that 
disrupts the manner in which behavior unfolds. Such an intervention can 

TAble 6.2

Template for an Activity

Activity: Name

A description of the Activity called Name
Precondition Boolean expression that specifies the condition for initiation
Event SCS associated with initiation
Duration The duration (typically acquired from a Data Module)
Event SCS associated with termination

TAble 6.3

Template for the Triggered Activity

Triggered Activity: Name

A description of the Triggered Activity called Name
Event SCS associated with initiation
Duration The duration (typically acquired from a Data Module)
Event SCS associated with termination
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have a variety of possible effects; for example, (a) the initial (tentative) dura-
tion of the activity instance may be altered, (b) the duration may no longer 
map onto a continuous time interval but may instead map onto two or more 
disjoint intervals, possibly in combination with (a), (c) the behavior intrinsic 
to the activity instance may be stopped and may never be resumed.

Two possible types of intervention are possible; namely, preemption and 
interruption. We examine each of these in turn. Preemption typically occurs 
in a situation where two (or more) activity instances require the same resource 
that cannot be shared. Consider for example the circumstance where the 
 initiation of one activity instance called ActP disrupts the flow of another 
activity instance called ActQ because a resource that is required by both 
activities instances must be taken from ActQ and reassigned to ActP because 
ActP has higher priority access to the resource. The ABCmod presentation 
of such a circumstance requires that ActQ be formulated as an Extended 
Activity (see Table 6.4) with a preemption subsegment within its Duration 
segment. A directive of the form “PRE.ActQ” in the starting SCS of ActP 
initiates the preemption. This directive links directly to the preemption sub-
segment of ActQ where the consequences of the preemption are specified.

In other words, an activity instance can disrupt the duration of some lower 
priority instance that is currently accessing the resource. There is however 
an implication here that some entity (e.g., a consumer entity instance) that is 
connected to the resource will be displaced. When this occurs, the comple-
tion of the service function for the displaced entity is suspended and con-
sequently the duration of the activity instance, from the perspective of the 
displaced entity, becomes distributed over at least two disjoint time inter-
vals, or in the extreme case may never even be completed.

An interruption accommodates the impact that changes in the value of an 
input variable can have on one or more of the activity instances within the 
model. For example, in response to a change in value of an input variable 

TAble 6.4

Template for the Extended Activity

Extended Activity: Name

A description of the Extended Activity called Name
Precondition Boolean expression that specifies the conditions for initiation
Event SCS associated with initiation
Duration The duration (typically acquired from an attribute)

Preemption
Event SCS associated with preemption

Interruption
Precondition Boolean expression that specifies the conditions under which an 

interruption occurs
Event SCS associated with interruption

Event SCS associated with termination
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(see Section 6.3.5), an activity instance may undergo a change in the manner 
in which it completes the task that was initially undertaken. An interruption 
can be treated as an event inasmuch as it is associated with a set of changes 
as reflected in an SCS within an interruption subsegment. The subsegment 
also provides the means for formulating the condition that defines the occur-
rence of the interruption.

To accommodate the requirements involved in handling an intervention, 
a more general activity construct is necessary. This construct is called an 
Extended Activity.

Extended Activity: As its name suggests, this construct can accommodate 
more general behavior and is the most comprehensive of the activity con-
structs. Its template is given in Table 6.4

The notion of interruption is equally relevant to a Triggered Activity. This 
gives rise to a generalization of the Triggered Activity construct that we call 
an Extended Triggered Activity.

Extended Triggered Activity: Like its basic counterpart, the distinguishing 
feature of an Extended Triggered Activity is that its initiation is not estab-
lished by a precondition but rather by an explicit reference to it within the 
terminating event of some activity construct. The template for an Extended 
Triggered Activity is given in Table 6.5.

Table 6.6 summarizes several important features of the various activity 
constructs.

6.3.4.2 Action Constructs

Action constructs are the second category of behavior constructs. While 
activity constructs serve to capture the various relevant tasks that are car-
ried out within the SUI, the action constructs provide the means for char-
acterizing relevant events—events that are not embedded within activity 
constructs. The implication here is that an action construct does not have 

TAble 6.5

Template for the Extended Triggered Activity

Extended Triggered Activity: Name

A description of the Extended Triggered Activity called Name
Event SCS associated with initiation
Duration The duration (typically acquired from an attribute)

Preemption
Event SCS associated with preemption

Interruption
Precondition Boolean expression that specifies the conditions under 

which an interruption occurs
Event SCS associated with interruption

Event SCS associated with termination
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duration, i.e., it unfolds at a single point in time. There are two direct conse-
quences of this feature; namely, an action construct has a single SCS and the 
concept of instances of an action construct is not meaningful.

There are two types of action construct and they are called the Conditional 
Action and the Scheduled Action. Since action constructs correspond to events, 
a fundamental requirement is the characterization of the condition that 
causes the occurrence of the underlying event. In the case of the Conditional 
Action we retain a parallel with the activity constructs and refer to this char-
acterization as the precondition for the Conditional Action. The template for 
the Conditional Action has the form shown in Table 6.7.

The Conditional Action is frequently used to accommodate a circumstance 
where the current state of the model inhibits a particular state change that needs 
to take place. In effect, the need for a delay of uncertain length is thus intro-
duced. In this circumstance the Conditional Action serves as a sentinel that 
awaits the development of the conditions that permit the state change to occur.

The Scheduled Action corresponds to a scheduled event and hence its 
occurrence is autonomous in the sense that it depends only on time, t, and is 
independent of the model’s state. Often the event in question is reoccurring 
and the requirement therefore is to characterize the points in time (the “time 
set”) when the underlying event occurs. The template for the Scheduled 
Action is shown in Table 6.8.

As will become apparent in the discussion of Section 6.3.5, the Scheduled 
Action provides the means for handling the notion of input within the 
ABCmod framework.

TAble 6.7

Template for the Conditional Action

Conditional Action: Name

A description of the Conditional Action called Name
Precondition Boolean expression that specifies the condition for initiation
Event The associated SCS

TAble 6.6

Features of the Activity Constructs

Feature Activity
Triggered 
Activity

Extended 
Activity

Extended 
Triggered 
Activity

Precondition Yes No Yes No
Starting Event Yes Optional Yes Optional
Duration Yes Yes Yes Yes
Intervention No No Yes Yes
Terminating 
Event

Optional Optional Optional Optional
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6.3.5 input

Our particular interest now is with characterizing input within the context of 
formulating an ABCmod conceptual model. The perspective that we adopt is 
that the notion of input in the DEDS domain has three constituents; namely, 
the following:

 a. E-input variables that reflect the influence of relevant aspects of 
the SUI’s environment upon the behavior that is of interest; e.g., the 
occurrence of storms that disrupt the operation of a port

 b. Independent variables that provide the means for characterizing 
time-varying features of the conceptual model that influence its 
behavior but are not themselves effected by it; e.g., .the work sched-
ule for part-time servers at the counter of a fast food outlet

 c. Input entity streams that represent the flow of entities into the 
domain of the ABCmod conceptual model; e.g., the cars that arrive 
to purchase gas at a service station.

Any particular ABCmod conceptual model may have many inputs; however, 
there is no requirement for representation from all of these categories.

Consider a variable, u, that represents an input from either category (a) or 
(b). This variable is, in fact, a function of time; i.e., u = u(t) and the essential 
information about it is normally provided by a sequence of ordered pairs of 
the form: < (tk, uk): k = 0,1,2, ---- > where tk is a value of time and uk = u(tk) (we 
assume that ti < tj for i < ¸j). Each of the time values, tk, in this sequence iden-
tifies a point in time where there is a noteworthy occurrence in the input, u 
(e.g., a change in value). We refer to this sequence as the characterizing sequence 
for u and denote it as CS[u]; i.e.,

 CS[u] = < (tk ,uk): k = 0, 1, 2, … > . (6.1)

The specifications that allow the construction of CS[u] are part of the data 
modeling task associated with model development. In this regard, however, 
note that there are two separate sequences that can be associated with CS[u]. 
These are:

 CSD[u] = < tk: k = 0, 1, 2, … >  CSR[u] = < uk: k = 0, 1, 2, … > (6.2)

TAble 6.8

Template for the Scheduled Action

Scheduled Action: Name

A description of the Scheduled Action called Name
TimeSet Characterization of the points in time where the 

underlying event occurs
Event The associated SCS
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which we call, respectively, the domain sequence for u and the range sequence 
for u. It is almost always true that the domain sequence for u has a stochastic 
characterization; i.e., a stochastic data model. Generally, this implies that if tj 
and tj + 1 = tj + ∆j are successive members of CSD[u], then the value of ∆j is pro-
vided by a stochastic model. The range sequence for u may or may not have 
a stochastic characterization.

From the perspective of developing inputs we assume that the data mod-
eling task has been completed. This, in particular, means that valid mecha-
nisms for creating the domain sequence and the range sequence for each 
input variable are available.

In some circumstances the input variable, u(t) being considered, falls in the 
class of piecewise constant (PWC) time functions. An example of this case 
is shown in Figure 6.4. Here u(t) could represent the number of electricians, 
at time t, included in the maintenance team of a large manufacturing plant 
that operates on a 24-hour basis but with varying levels of production (and 
hence varying requirements for electricians). The behavior of the model over 
the interval [tj, tj + 1) likely depends directly on the value uj = u(tj) hence the 
representation of u(t) as a PWC function is not only meaningful but is, in fact, 
essential. The characterizing sequence for u(t) as shown in Figure 6.4 is:

 CS[u] = < (t0,1), (t1,2), (t2,4), (t3,4), (t4,3), (t5,1), (t6,2) >  (6.3)

Observe also that with the interpretation given above this particular input is 
somewhat distinctive inasmuch as neither its domain sequence nor its range 
sequence will likely have a stochastic characterization.

As an alternate possibility consider a case where, u(t), represents the num-
ber of units of a particular product P requested on orders received (at times 
tη, tη + 1, … tj …) by an Internet-based distributing company (η = 0 if the first 
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Fig ur e 6.4
A piecewise constant time function. (From on Birta, L.G. and Arbez, G., Modeling and Simulation: 
Exploring Dynamic System Behavior, Springer, London, Fig. 4.3, p. 115, 2007. With kind  permission 
of Springer Science and Business Media.)
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order arrives at the left boundary of the observation interval, otherwise η = 1 
where t1 > t0). The characterizing sequence would be written as:

 CS[u] = < (tη , uη), (tη + 1, uη + 1), --- (tj, uj) --- >  (6.4)

Note, however, that only the specific values uη = u(tη), uη + 1 = u(tη + 2), … uj = u(tj) 
are relevant. In other words, representation of this particular input as a PWC 
time function is not appropriate because the value of u between order times 
has no meaning. Note also that the data model for this input would need to 
provide a specification for both the domain sequence CSD[u] of order times 
and the range sequence CSR[u] of order values as shown in (6.5). Both would 
likely be in terms of specific probability distribution functions.

  CSD[u] = < tη, tη + 1 … tj, … > CSR[u] = < uη, uη + 1, … uj, … >  (6.5)

Consider now a variable s = s(t) that represents an input from category (c); 
i.e., an input entity stream. Recall that the entities in question here would 
necessarily be instances of some particular entity structure.* The character-
izing sequence s can be written as:

 CS[s] = < (tη, 1), (tη + 1, 1), (tη + 2, 1), --- (tj, 1) --- >   (6.6)

Here each value in the domain sequence < tη, tη + 1, tη + 2, … tj … > is the arrival 
time of an instance of the entity structure in question. Each element of the 
range sequence has a value of 1; i.e., s(tj) = 1 for all j because we generally 
assume that arrivals occur one at a time. As above η = 0 if the first arrival 
occurs at the left boundary of the observation interval, otherwise η = 1. The 
domain sequence is constructed from the arrival process associated with the 
entity structure in question.

All three categories of input have a characterizing sequence and hence a 
domain sequence. The impact of inputs from each of the categories is cap-
tured in the ABCmod framework by a Scheduled Action whose time set is 
the domain sequence. It should be emphasized that it is only in limited cir-
cumstances that the domain sequence is deterministic; generally the values 
in the domain sequence evolve in a stochastic manner.

The salient features of the inputs for any ABCmod conceptual model are 
summarized in a template. The format of this template is shown in Table 6.9. 
The general format of the associated Scheduled Actions is shown in Table 6.10.

6.3.6 Output

The output of a simulation experiment can be identified with the information 
that is either explicitly or implicitly required for achieving the goals of the 

* The notion of an input entity stream carries the implication of transient existence; hence the 
entity structures that we associate with this notion always have scope =Class.
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TAble 6.9

Template for Inputs

Inputs

Variable Description Scheduled Action

e-Inputs

u(t) Description of the input variable u(t) Name of the associated 
Scheduled Action

Independent Variables

u(t) Description of the input variable u(t) Name of the associated 
Scheduled Action

Input Entity Streams

s(t) Description of the input entity stream which 
that the input variable s(t) represents

Name of the associated 
Scheduled Action

TAble 6.10

Templates for the Scheduled Actions for Inputs

Scheduled Action: uName

TimeSet t = tk ∈ CSD [u] as defined by DM.uDomain
Event Typically the assignment to the variable u of the value that it acquires at time 

t = tk ∈ CSD [u] as prescribed by CSR[u], which is provided by a designated 
data module; e.g., DM.uRange.

(a) Case where the Scheduled Action corresponds to the e-input variable, u(t)

Scheduled Action: uName

TimeSet t = tk ∈ CSD [u] as defined by DM.uDomain
Event Typically the assignment to the variable u of the value that it acquires at time 

t = tk ∈ CSD [u] ] as prescribed by CSR[u], which is provided by a designated 
data module; e.g., DM.uRange.

(b) Case where the Scheduled Action corresponds to an independent variable, u(t)

Scheduled Action: sName

TimeSet t = tk ∈ CSD [s] as defined by DM.sDomain
Event An entity instance from the entity structure of interest(called ESname) is first 

established via:

iX.ESname ← SM.Derive(ESname)
where the entity structure in question has role = X.

The Derive operation is typically followed by appropriate attribute value 
assignments. Where relevant, the newly arriving entity is typically positioned 
(connected) to some appropriate entity within the model

(c) Case where the Scheduled Action corresponds to an input entity stream



The ABCmod Conceptual Modeling Framework 161

simulation project. The implication here is that a simulation experiment that 
generates no output information serves no practical purpose. Strictly speak-
ing, such information is outside the scope of both structural and behavioral 
aspects of a conceptual model. Nevertheless it is fundamental and appro-
priate steps to capture the relevant data are essential in the development of 
any simulation model. Inasmuch as a conceptual model can be viewed as a 
design document for a simulation model, this data requirement needs to be 
an integral part of conceptual model’s formulation.

For the most part, output from a simulation experiment flows from the 
entities within the conceptual model. Nevertheless there are circumstances 
where considerable convenience can be realized by manipulating, within the 
body of a behavior construct, a variable that is unrelated to any entity but 
whose final value provides information relevant to the project goals; e.g., a 
counter of the number of customers that wait longer than five minutes in a 
queue leading to a service desk. In some respects, such an output variable is 
the most fundamental of the several types that are outlined in this discus-
sion. It is called a Simple Scalar Output Variable (SSOV).

As indicated above, output generally flows from the entities within the 
conceptual model. In fact, output data is linked to values of specific attributes 
that have special relevance to project goals. These entity attributes become 
output variables. Over the course of the observation interval, these output 
variables generate data sets; i.e., collections of discrete data values and it is 
these sets of values that are of special interest.

There are two categories of such data sets, one is called a trajectory set and 
the other a sample set. A trajectory set, denoted by TRJ[y], is a collection of 
values generated by the output variable y, which is viewed as a time func-
tion; i.e., y = y(t). The collected values are a set of ordered pairs of the form 
(tk, yk) where the tk are points in time that have some special significance (e.g., 
occurrence of a change in value of the output variable). A sample set on the 
other hand, is an accumulation of data values deposited by entities flowing 
within, or through, the conceptual model. The output variable here is again 
a specific entity attribute but the deposited values generally relate to differ-
ent entities. A sample set associated with an output variable, y, is denoted by 
PHI[y] and y is often called a sample variable.

The entire set of data values within a Trajectory Set or a Sample Set is not 
normally of interest in its entirety. (The notable exception here is the case 
where a graphical presentation of the data in these sets is desired.) Typically 
it is some property of the data that has special relevance; e.g., minimum, 
maximum, average. Normally the scalar value obtained by carrying out such 
an operation is assigned to an output variable called a Derived Scalar Output 
Variable (DSOV).

The documentation for outputs is organized in terms of a template that 
incorporates the various types of output variables that are relevant to the 
project. The template is shown in Table 6.11.
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6.3.7 Data Modules

It is rarely possible to formulate an ABCmod conceptual model without the 
need to access data. The simplest such requirement is the case where there is 
a need for a sample from a prescribed distribution function. Alternately, the 
requirement might be for a sample from one or several specified distribu-
tions according to some prescribed rule. The convention we have adopted in 
our ABCmod framework is to encapsulate any such data delivery requirement 
within a named data module, which serves as a wrapper for the data specifica-
tion. The rational here is simply to facilitate modification of the actual source of 
the data if that need arises. The collection of such data modules that are required 
within an ABCmod conceptual model is summarized in a table whose template 
is shown in Table 6.12. Note that by convention, we highlight the name of a data 
module referenced in the body of behavior constructs with the prefix “DM.”

6.3.8 Standard Modules and u ser-Defined Modules

A variety of standard operations recur in the formulation of the SCS’s within 
the various behavior constructs that emerge during the development of any 
ABCmod conceptual model. We assume the existence of modules to carry 
out these operations and each of these is briefly outlined below.

InsertQue(QueueName, Item): Inserts Item into a queue entity called •	
QueueName according to the declared queuing protocol associated 
with QueueName.

TAble 6.11

Template for Summarizing Outputs

Outputs

Simple Scalar Output Variables (SSOVs)

Name Description

Y Description of the simple scalar output variable Y

Trajectory Sets

Name Description

TRJ[y] Description of the time variable y(t)

Sample Sets

Name Description

PHI[y] Description of the sample variable y whose values populate the sample set PHI[y]

Derived Scalar Output Variables (DSOV’s)

Name Description Data Set Name Operator

Y Significance of the 
value assigned to Y

The name of the data set 
from which the value of 
Y is derived

The operation that is carried out 
on the underlying data set to 
yield the value assigned to Y
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InsertQueHead(QueueName, Item): Inserts Item at the head of a •	
queue entity called QueueName.
Ident •	 ← RemoveQue(QueueName): Removes the item that is at the 
head of the queue entity called QueueName. Ident is the identifier 
for the returned item.
InsertGrp(GroupName, Item): Inserts Item into the group entity •	
called GroupName.
RemoveGrp(GroupName, Ident): Removes an item from the group •	
called GroupName. Ident is the identifier for the item to be removed 
from the group.
Ident •	 ← RemoveGrpAny(GroupName): Removes an arbitrary item 
from the group called GroupName. Ident is the identifier for the item 
removed from the group.
Put(•	 PHY[y], Val): Places the value Val into the sample set called 
PHY[y]

Ident •	 ← Derive(EntityStructureName): Derives an entity with iden-
tifier Ident from the entity structure called EntityStructureName.
Leave(Ident): It frequently occurs that a specific entity’s existence •	
within the model comes to an end. This module explicitly indicates 
such an occurrence and its argument is the identifier of the entity 
in question. The module is typically invoked within the SCS of the 
terminating event of an activity instance.
Terminate: An instance of a (Triggered) Extended Activity construct •	
that undergoes an intervention must necessarily terminate. This is 
made explicit by ending the SCS of each intervention subsegment 
with a reference to the Terminate module.

Typically modules are needed to carry out specialized operations that are 
distinctive to the specific conceptual model being developed. These can be 
freely defined wherever necessary to augment the ABCmod framework and 
ease the conceptual modeling task. They are called User-Defined Modules 
and they are summarized in a table whose template is given in Table 6.13.

TAble 6.12

Template for Summarizing Data Modules

Data Modules

Name Description Data Model

ModuleName(parameter 
list)

Statement of the purpose of 
the data module called 
ModuleName

Details of the mechanism that is 
invoked in order to generate the data 
values provided by the data module 
called ModuleName. Typically 
involves sampling values from one or 
more distributions.
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Note also that by convention, we highlight references to Standard Modules 
and User-Defined Modules within the body of behavior constructs with the 
prefix “SM.” or “UM.”, respectively.

6.4  Methodology for Developing an ABCmod 
Conceptual Model

The discussion in the preceding sections outlines a framework (namely the 
ABCmod framework) for capturing and organizing the detail that appro-
priately characterizes the behavior of some particular SUI within the DEDS 
domain. However, except for the simplest of cases, the product that emerges 
(i.e., an ABCmod conceptual model) can become complex. To deal with this 
complexity, a two stage hierarchical approach has been incorporated to facili-
tate the model building process. This consists of a high-level formulation fol-
lowed by a detailed formulation. We briefly summarize each of these below. 
Further detail is provided in the example that is presented in section 6.5.

The high-level formulation has three constituents:

Structural Overview:•	  The structural overview provides a brief 
description of each of the entity structures that will be required 
together with a graphical presentation of the various entities that 
are derived from them. This structural diagram is constructed from 
a predefined collection of graphical symbols that are associated 
with the various role values for entity structures (for example, see 
Figure 6.6).
List of Data Models:•	  This is a list of the data models that will be needed 
in the development of the data modules that are used in the concep-
tual model’s formulation. Initially the specification of specific sto-
chastic distributions is not necessary since the initial intent is simply 
to establish what models will be required. Typically establishing the 
appropriate data models is not a trivial task. An examination of this 
process is beyond the scope of this presentation. We note, however, 
that the process can be undertaken in parallel with the development 
of the detailed conceptual model.

TAble 6.13

Template for Summarizing User-Defined Modules

User-Defined Modules

Name Description

ModuleName(parameter list) Purpose of the user-defined module called ModuleName
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Behavioral Overview•	 : The behavioral overview provides a list of the 
behavior constructs that will be needed together with a brief descrip-
tion of the task that each carries out. In addition, a behavior diagram 
is presented that is a collection of life-cycle diagrams (for example, 
see Figure 6.7). Often an entity participates in more than one behav-
ior construct instance; i.e., it flows from one instance of a behavior 
construct to another. This flow can take place in any one of a variety 
of ways and the purpose of the life-cycle diagram is to clarify this 
behavioral feature.

The detailed-level formulation is organized into five sections:

Structural Components:•	  The specification for each of the required entity 
structures is presented in the tabular format shown in Table 6.1.
Data Components:•	  The constants and parameters for the model are 
summarized. Also included here is the summary of the data mod-
ules (see Table 6.12) that are needed in the development of the behav-
ior constructs.
Input Components:•	  The inputs to the model (e-inputs, independent 
variables, and input entity streams) are summarized (see Table 6.9).
Output Components: •	 The various outputs of the model (SSOV’s, trajec-
tory sets, sample sets, DSOV’s) are summarized (see Table 6.11).
Behavioral Components:•	  This section begins with the identification of 
the time units that are used and the observation interval. The assump-
tions relating to initial conditions are summarized in an Initialize 
Table; i.e., the conditions at the left-hand boundary of the observa-
tion interval (usually t = 0). By convention all queues and groups 
are assumed to be empty at t = 0 unless otherwise indicated in the 
Initialize Table. Note also that all behavior constructs are predicated 
by the assignments (explicit or implicit) of the Initialize Table. User-
modules that are introduced to aid in the formulation of behavior 
constructs are presented in the tabular format shown in Table 6.13. 
The section ends with the collection of behavior constructs that are 
pertinent to the project (see Table 6.2 through Table 6.8).

6.5 Example Project: The Bigtown Garage

The ABCmod conceptual modeling process is illustrated in this section. We 
begin with an outline of a modeling and simulation project and then develop 
for it an ABCmod conceptual model. The requirements for the model’s devel-
opment demonstrate many (but not all) the features that are available.



166 Conceptual Modeling for Discrete-Event Simulation

6.5.1 Su i Key Features

6.5.1.1 SUI Overview

Bigtown is a large city that operates its own garage to service a range of 
city owned vehicles. It carries out routine maintenance and breakdown 
repair work on vehicles assigned to a variety of city departments; e.g., bylaw 
enforcement, building inspection services, environmental services, and as 
well, the police department. The police vehicles are by far the largest com-
ponent of the clientele. Furthermore, police vehicles always receive priority 
service at the garage because of the key function that they provide.

Because of severe budget cutbacks, the renewal of the fleet of police vehi-
cles has been postponed for several years. The fleet is aging and is placing 
an increasing burden upon the garage’s operation. The impact is becoming 
an increasing irritant to the ancillary departments because their vehicles are 
often unavailable due to congestion problems in the garage.

6.5.1.2 General Project Goals

To address this problem the city manager has decided to explore, via a simu-
lation study, the impact of continued restrictions on the renewal of the police 
car fleet. The specific interest is with gaining some insights into how the con-
gestion problem will develop if funding restrictions continue and, as well, 
when the problem will likely reach an intolerable level.

6.5.1.3 SUI Details

The garage has four service bays (see Figure 6.5) and is open 24 hours a day, 
seven days a week. There are three eight-hour shifts: the day, the evening, 
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Bigtown Garage schematic.
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and the night, and currently there are two mechanics working during 
each of these shifts. Although the two extra service bays currently provide 
some passive utility (see description below) they do offer the possibility for 
increased throughput if additional mechanics were hired for the one or more 
of the shifts.

Vehicles arrive for service either because of routine maintenance require-
ments or because they require repair due to mechanical failure. The vehicles 
scheduled for routine maintenance on any particular day can be assumed to 
arrive at the beginning of the day shift; i.e., 8:00 a.m. When a vehicle arrives, 
a work order is filled out. This summarizes the nature of the service require-
ment. The time of the vehicle’s arrival at the garage is also noted because 
vehicles are serviced in order of their arrival but with due recognition of the 
priority of police vehicles. In the case where vehicles have the same arrival 
time stamp, the vehicles are serviced according to the order in which the 
work orders were filled out.

The priority given to police vehicles implies that no ancillary vehicle is 
moved into a service bay from the parking lot until there is no remaining 
police vehicle waiting to be serviced.

A police vehicle in the parking lot is moved into a service bay if either (a) 
there is at least one mechanic who is idle, or (b) there is at least one mechanic 
carrying out a servicing task on an ancillary vehicle; where (b) is applied 
only when there are no idle mechanics.

In the case of (a), there is at least one unoccupied service bay and the police 
vehicle is moved into one of them. Both the choice of the bay (if there is more 
than one that is empty) and the allocated mechanic are random selections. 
In the case of (b), work on an ancillary vehicle is stopped thereby releasing 
a mechanic to work on the police vehicle. If there is an empty service bay, 
the police vehicle is moved there and the freed mechanic moves to that bay 
to begin the servicing work. If, on the other hand, there is no empty service 
bay,* then the ancillary vehicle in the service bay of the freed mechanic is 
moved into one of four holding areas within the garage thereby releasing 
a service bay for the police vehicle. It may occur that a group of displaced 
ancillary vehicles is thus created. Work on these vehicles is resumed and 
completed (provided there are no waiting police vehicles).

6.5.1.4 Detailed Goals and Output

Several measures of performance of the garage’s operation have been iden-
tified as being of interest. Included here are: (a) the average time spent by 
vehicles waiting for service to begin (separately for each of the two catego-
ries of vehicle); (b) the average “total time” spent from arrival to completion 

* This will only occur when there are more than two mechanics working during a shift which 
is a situation that arises when solution options are explored in the simulation study.
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of service (again separately for each of the two categories of vehicle); (c) the 
average number of busy mechanics

The city manager intends to explore alternate scenarios that correspond 
to a deteriorating police car fleet. Three scenarios are of particular interest. 
They correspond to the cases where the distributions of interarrival time 
for breakdown repair for police vehicles are scaled so that their mean val-
ues are decreased first by 20%, then by 40%, and finally by 60% from their 
current operational values. The effect of increasing the number of mechan-
ics working at the garage to 3 and 4 is also of interest for each of the three 
scenarios.

6.5.2 AbCmod Conceptual Model

6.5.2.1 High-Level Conceptual Model

6.5.2.1.1 Structural Overview

 1. Consumer Class: PoliceVeh—Derived entities represent the police 
vehicles that require servicing.

 2. Consumer Class: AncillaryVeh—Derived entities represent the ancil-
lary vehicles that require servicing.

 3. Queue Unary: ParkedPV—The derived entity provides the means for 
accumulating the police vehicles waiting for servicing. This queue 
establishes an order of servicing that reflects the arrival time stamps 
on the work orders.

 4. Queue Unary: ParkedAV—The derived entity provides the means 
for accumulating the ancillary vehicles waiting for servicing. This 
queue establishes an order of servicing that reflects the arrival time 
stamps on the work orders.
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Bigtown Garage structural diagram.
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 5. Resource Group Unary: Bays—The derived entity represents the ser-
vice bays used for servicing vehicles.

 6. Group Unary: Holding—The derived entity represents the holding 
area where an ancillary vehicle is placed in order to make a service 
bay available to service a police vehicle.

Notes

Mechanics are not explicitly modeled. Instead, RG.Bays will have •	
the attribute RG.Bays.freeMechanics to indicate the number of idle 
mechanics (that is mechanics that are not currently servicing a 
 vehicle). The number of mechanics present during each of the shifts 
is a model parameter.

6.5.2.1.2 Data Model Overview

Interarrival times for vehicles requiring routine maintenance (this is •	
constant since vehicles requiring routine maintenance all arrive at 8:00 
a.m.). The following values relating to arriving vehicles are random:

Number of vehicles that arrive for routine maintenance on any •	
particular day.
Fraction of vehicles requiring routine maintenance that are •	
police vehicles.

Interarrival times of police vehicles requiring breakdown repair. The •	
associated distributions are expected to be dependent on the shift.
Interarrival times of ancillary vehicles requiring breakdown repair. The •	
associated distributions are expected to be dependent on the shift.
Service time for breakdown repair (assumed to be the same for both •	
police vehicles and ancillary vehicles).
Service time for routine maintenance (assumed to be the same for •	
both police vehicles and ancillary vehicles).

6.5.2.1.3 Behavioral Overview

Scheduled Actions:•	
RMArr: Routine maintenance arrivals of both police and ancil-•	
lary vehicles.
BRArrPV: Breakdown repair arrivals of police vehicles.•	
BRArrAV: Breakdown repair arrivals of ancillary vehicles.•	

Activities:•	
ServiceAV: The servicing task for an ancillary vehicle. This activ-•	
ity may be preempted by the ServicePV activity.
ServicePV: The servicing task for a police vehicle. This activity •	
may preempt the ServiceAV activity.
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6.5.2.2 Detailed Conceptual Model

Structural Components

Consumer Class: PoliceVeh

The police vehicles that need servicing.

Attributes Description

state Set to SERVICING when the vehicle is being serviced, NOTSTARTED 
when servicing has not yet started.

serviceType Indicates type of service required; values are: BR for breakdown 
repair and RM for routine maintenance.

arrivalTime The time at which the police vehicle arrived at the garage.

Consumer Class: AncillaryVeh

The ancillary vehicles that need servicing.

Attributes Description

state Set to SERVICING when the vehicle is being serviced, NOTSTARTED 
when servicing has not yet started, MIDSERVICE when servicing has 
been preempted.

serviceType Indicates type of service required; values are: BR for breakdown 
repair and RM for routine maintenance.

arrivalTime The time at which the ancillary vehicle arrived at the garage.

start The time at which the servicing started (or resumed after 
preemption).

timeToService The time required to complete the service (this value changes when 
the servicing is pre-empted).

ServicePV ServiceAV

RMArr BRArrPV BRArrAVRMArr

Police vehicle life cycle Ancillary vehicle life cycle

(b)(a)

Fig ur e 6.7
Bigtown Garage behavioral diagram.
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Queue Unary: ParkedPV

FIFO queue of police vehicles waiting for servicing.

Attributes Description

n Number of police vehicle entities in list.

list List of police vehicle entities.

Queue Unary: ParkedAV

FIFO queue of ancillary vehicles waiting for servicing.

Attributes Description

n Number of ancillary vehicle entities in List.

list List of ancillary vehicle entities.

Resource Group Unary: Bays

This Resource Group represents the service bays.

Attributes Description

n Number of vehicles in this Resource Group. Note some vehicles may 
be in MIDSERVICE. Note that n is less than or equal to four.

list The list of the vehicle entities in this Resource Group.

freeMechanics Gives the number of idle mechanics.

Group Unary: Holding

This group represents the holding areas within the garage.

Attributes Description

n Number of ancillary vehicle entities in this Group. Note these vehicles 
will be in MIDSERVICE. Note that n is less than or equal to four.

list The list of the ancillary vehicle entities in this Group.

Data Modeling Components

Constants

Name Role Value

NumBays Number of service bays. 4

NumRMMin Minimum number of vehicles that arrive on any 
particular day for routine maintenance.

TBD

NumRMMax Maximum number of vehicles that arrive on any 
particular day for routine maintenance.

TBD

FractionPV Fraction of vehicles arriving for routine maintenance 
that are police vehicles.

2/3

MeanAV_Day Mean interarrival time of ancillary vehicles requiring 
breakdown repair during the day shift.

TBD

MeanAV_
Evening

Mean interarrival time of ancillary vehicles requiring 
breakdown repair during the evening shift.

TBD

(Continued)
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Constants (Continued)

Name Role Value

MeanAV_Night Mean interarrival time of ancillary vehicles requiring 
breakdown repair during the night shift.

TBD

MeanBR_
ServiceTime

Mean service time for breakdown repair. TBD

MeanRM_
ServiceTime

Mean service time for routine maintenance. TBD

Parameters

Name Role Value

MeanPV_Night Mean interarrival time of police vehicles requiring 
breakdown repair during the day shift.

MP1, 0.8*MP1, 
0.6*MP1, 0.4*MP1

MeanPV_
Evening

Mean interarrival time of police vehicles requiring 
breakdown repair during the evening shift.

MP2, 0.8*MP2, 
0.6*MP2, 0.4*MP2

MeanPV_Night Mean interarrival time of police vehicles requiring 
breakdown repair during the night shift.

MP3, 0.8*MP3, 
0.6*MP3, 0.4*MP3

NumMechanics Number of mechanics working at the garage. 2, 3, 4

Data Modules

Name Description Data Model

NumRMVehicles() Gives the number of vehicles that 
arrive for routine maintenance. 
A fraction (FractionPV) of this 
number are police vehicles.

Uniform(NumRMMin, 
NumRMMax)

InterArrivalPV_BR( ) Gives the interarrival times of 
police vehicles arriving for 
breakdown repair.

If Shift = DAY: 
Exponential(MeanPV_Day)

If Shift = EVENING: 
Exponential(MeanPV_Evening)

If Shift = NIGHT: 
Exponential(MeanPV_Night)

InterArrivalAV_BR( ) Gives the interarrival times of 
ancillary vehicles arriving for 
breakdown repair.

If Shift = DAY: 
Exponential(MeanAV_Day)

If Shift = EVENING: 
Exponential(MeanAV_Evening)

If Shift = NIGHT: 
Exponential(MeanAV_Night)

ServiceTime 
(serviceType)

Gives the time to service a 
vehicle according to the value of 
serviceType.

If serviceType = RM: 
Exponential(MeanRM_
ServiceTime)

If serviceType = BR: 
Exponential(MeanBR_
ServiceTime)

RMArrivals() Gives the arrival times of 
vehicles for routine 
maintenance.

Every 24 hours starting at t = 0; 
i.e., t = 24k, k = 0,1,2 …

ShiftChangeTimes() Gives the points in time when a 
shift change occurs.

Every 8 hours starting at t = 8; 
i.e., t = 8k, k = 1,2. 3 …
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Input Components

Inputs

Variable Description Scheduled 
Action

Independent Variables

Shift Reflects the current shift; values are: DAY (day shift), 
EVENING (evening shift) or NIGHT (night shift).

ShiftChange

Input Entity Streams

RMInput Vehicles requiring routine maintenance. RMArr

BRInputPV Police vehicles requiring breakdown repair. BRArrPV

BRInputAV Ancillary vehicles requiring breakdown repair. BRArrAV

Output Components

Outputs

Trajectory Sets

Name Description

TRJ[NumBusyMechanics] NumBusyMechanics = NumMechanics − RG.Bays.freeMechanics

Sample Sets

Name Description

PHI[WaitServiceAV] Each value is the time spent by some ancillary vehicle waiting 
for service to begin.

PHI[WaitServicePV] Each value is the time spent by some police vehicle waiting for 
service to begin.

PHI[TotalTimeAV] Each value is the elapsed time from arrival to completion of 
service for some ancillary vehicle.

PHI[TotalTimePV] Each value is the elapsed time from arrival to completion of 
service for some police vehicle.

Derived Scalar Output Variables (DSOV’s)

Name Description Output Set Name Operator

AvgWaitSrvAV Average time spent by 
ancillary vehicles waiting for 
service to begin.

PHI[WaitServiceAV] MEAN

AvgWaitSrvPV Average time spent by police 
vehicles waiting for service to 
begin.

PHI[WaitServicePV] MEAN

AvgTotalTimeAV Average elapsed time from 
arrival to completion of service 
for ancillary vehicles.

PHI[TotalTimeAV] MEAN

AvgTotalTimePV Average elapsed time from 
arrival to completion of service 
for police vehicles.

PHI[TotalTimePV] MEAN

AvgBusyMech Average number of busy 
mechanics.

TRJ[NumBusyMechanics] MEAN
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Behavioral Components
Time units: hours
 Observation interval: t = 0 corresponds to 8:00 a.m.; steady state study, hence 
right-hand boundary to be determined by experimentation.

User Defined Modules
Name Description

GetAVBeingServiced(iC.
AncillaryVeh)

Returns TRUE if an ancillary vehicle being serviced in RG.Bays 
(i.e., iC.AncillaryVeh.status = SERVICING). Furthermore, sets 
iC.AncillaryVeh to reference an AncillaryVeh entity being 
serviced (random selection).

ServiceBayAvailablePV() Returns TRUE if an additional police vehicle can be 
accommodated in RG.Bays. This occurs if either there is an idle 
mechanic (RG.Bays.freeMechanics ≠ 0) or if there is an ancillary 
vehicle being serviced in RG.Bays. Note that a free mechanic 
implies a free bay.

AVMidService(iC.
AncillaryVeh)

Returns TRUE if an ancillary vehicle is in mid-service in 
RG.Bays (i.e., iC.AncillaryVeh.state = MIDSERVICE). 
Furthermore, sets iC.AncillaryVeh to reference an AncillaryVeh 
entity in mid-service (random selection).

Initialize

RG.Bays.freeMechanics ← NumMechanics
Shift ← DAY

Scheduled Action: RMArr

Arrival of vehicles requiring routine maintenance.

TimeSet t = tk ← CSD [RMInput] as defined by DM.RMArrivals( )

Event NumVeh ← DM.NumRMVehicles()

NumPVVeh ← NumVeh * FractionPV

NumAVVeh ← NumVeh - NumPVVeh

FOR i = 1 TO NumPVVeh

iC.PoliceVeh ← SM.Derive(PoliceVeh)

iC.PoliceVeh.state ← NOTSTARTED

iC.ServiceType ← RM

iC.PoliceVeh.arrivalTime ← t

SM.InsertQue(Q.ParkedPV, iC.PoliceVeh)

ENDFOR

FOR i = 1 TO NumAVVeh

iC.AncillaryVeh ← SM.Derive(AncillaryVeh)

iC.AncillaryVeh.state ← NOTSTARTED

iC.AncillaryVeh.serviceType ← RM

iC.AncillaryVeh.arrivalTime ← t

SM.InsertQue(Q.ParkedAV, iC.AncillaryVeh)

ENDFOR
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Scheduled Action: BRArrPV
Arrivals of police vehicles requiring breakdown repair.
TimeSet t = tk ← CSD [BRInputPV] as defined by DM.InterArrivalPV_BR( )
Event iC.PoliceVeh ← SM.Derive(PoliceVeh)

iC.PoliceVeh.state ← NOTSTARTED
iC.PoliceVeh.serviceType ← BR
iC.PoliceVeh.arrivalTime ← t
SM.InsertQue(Q.ParkedPV, iC.PoliceVeh)

Scheduled Action: BRArrAV
Arrivals of ancillary vehicles requiring breakdown repair.
TimeSet t = tk ← CSD [BRInputAV] as defined by DM.InterArrivalAV_BR( )
Event iC.AncillaryVeh ← SM.Derive(AncillaryVeh)

iC.AncillaryVeh.state ← NOTSTARTED
iC.AncillaryVeh.serviceType ← BR
iC.AncillaryVeh.arrivalTime ← t
SM.InsertQue(Q.ParkedAV, iC.AncillaryVeh)

Scheduled Action: ShiftChange
Assigns appropriate values to the input variable Shift.
TimeSet t = tk ← CSD [Shift] as defined by DM.ShiftChangeTimes()
Event IF Shift = DAY

Shift ← EVENING
ELSE IF Shift = EVENING

Shift ← NIGHT
ELSE // night shift

Shift ← DAY
ENDIF

Activity: ServicePV
Servicing a police vehicle.
Precondition UM.ServiceBayAvailable() AND Q.ParkedPV.n ≠ 0
Event iC.PoliceVeh ← SM.RemoveQue(Q.ParkedPV)

SM.Put(PHI[WaitServicePV], t − iC.PoliceVeh.arrivalTime)
IF RG.Bays.freeMechanics ≠ 0 // Free bay exists in RG.Bays

Decrement RG.Bays.freeMechanics
ELSE // Need to preempt service on ancillary vehicle

UM.GetAVBeingServiced(iC.AncillaryVeh)
PRE.ServiceAV(iC.AncillaryVeh)

(Continued)
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Activity: ServicePV (Continued)
IF RG.Bays.n = NumBays // Bay full, need to remove AV

SM.RemoveGrp(RG.Bays, iC.AncillaryVeh)
SM.InsertGrp(G.Holding, iC.AncillaryVeh)

ENDIF
ENDIF
SM.InsertGrp(RG.Bays, iC.PoliceVeh)
iC.PoliceVeh.state ← SERVICING

Duration DM.ServiceTime(iC.PoliceVeh.serviceType)
Event SM.RemoveGrp(RG.Bays, iC.PoliceVeh)

SM.Put(PHI[TotalTimePV], t − iC.PoliceVeh.arrivalTime)
Increment RG.Bays.freeMechanics
SM.Leave(iC.PoliceVeh)

Extended Activity: ServiceAV
Servicing an ancillary vehicle.
Precondition ((Q.ParkedPV.n = 0) AND

((RG.Bays.freeMechanics ≠ 0 AND
(UM.AVMidService(iC.AncillaryVeh) = TRUE
OR Q.Holding.n ≠ 0 OR Q.ParkedAV.n ≠ 0))

Event Decrement RG.Bays.freeMechanics
IF UM.AVMidService(iC.AncillaryVeh) = TRUE

// re-initiate servicing
ELSE IF Q.Holding.n ≠ 0

iC.AncillaryVeh ←SM.RemoveGrpAny(G.Holding)
SM.InsertGrp(RG.Bays, iC.AncillaryVeh)

ELSE // Starting a new service
iC.AncillaryVeh ← SM.RemoveQue(Q.ParkedAV)
iC.AncillaryVeh.start ← t
iC.AncillaryVeh.timeToService ← DM.ServiceTime(iC.
AncillaryVeh.serviceType)
SM.Put(PHI[WaitServiceAV], t − iC.AncillaryVeh.arrivalTime)
SM.InsertGrp(RG.Bays, iC.AncillaryVeh)

ENDIF
iC.AncillaryVeh.state ← SERVICING
iC.AncillaryVeh.start ← t

Duration iC.AncillaryVeh.timeToService
Pre-emption

Event iC.AncillaryVeh.timetoService − ← t − iC.AncillaryVeh.start
iC.AncillaryVeh.state ← MIDSERVICE
SM.Terminate

Event SM.RemoveGrp(RG.Bays, iC.AncillaryVeh)
SM.Put(PHI[TotalTimeAV], t − iC.AncillaryVeh.arrivalTime)
Increment RG.Bays.freeMechanics
SM.Leave(iC.AncillaryVeh)



The ABCmod Conceptual Modeling Framework 177

6.6 Conclusions

A meaningful conceptual model is essential for a successful simulation 
study. The development process is driven by the goals that have been iden-
tified for the modeling and simulation project and focuses on capturing 
the structural and behavioral features of the SUI that are relevant to the 
achievement of those goals. Furthermore the process itself serves as a vehi-
cle that allows all project stake holders to participate in the identification of 
these structural and behavioral features. The model that evolves serves as 
the blueprint for the development of the program code for carrying out the 
simulation study. The ABCmod framework outlined in this  chapter pro-
vides an environment designed specifically to facilitate the achievement 
of these fundamental objectives of the conceptual modeling task. It has 
been extensively used for several years in a senior undergraduate/junior 
 graduate course where students carried out group projects. The wide range 
of nontrivial student projects that have been completed provide a convinc-
ing body of evidence that the framework does achieve its intended purpose 
very effectively.

Dealing with detail and complexity is an essential requirement of any con-
ceptual modeling environment. This is accommodated in the ABCmod con-
ceptual modeling framework by providing a two stage hierarchal approach. 
Included at the initial high-level stage is the identification of both the mod-
eling artifacts that map onto objects within the SUI that have relevance to 
the model development process and, as well, the modeling constructs that 
 capture the behavioral features of these artifacts. These correspond, respec-
tively, to the identification of the entity structures and the behavior constructs 
pertinent to the model. The second stage is concerned with specifying an 
appropriate level of detail for the entity structures and the behavior con-
structs that have been identified.

The high-level model is presented using a graphical format. This includes 
structural diagrams and a collection of life-cycle diagrams that show how 
entities move among the behavior constructs. The detailed level model is 
presented using tables with predefined formats. The text-based tabular for-
mat provides the important advantage of accommodating arbitrary complex-
ity. In particular, straightforward mechanisms are provided for dealing with 
the disruption of entity flow through an activity (e.g., either interruption or 
preemption).

The complexity inherent in large systems is best handled by formulat-
ing an interacting subsystem perspective often organized in a hierarchical 
manner. Such a perspective naturally is reflected into the conceptual model-
ing process. Extensions to the ABCmod framework that will conveniently 
accommodate such a hierarchical perspective are currently under way. A 
software tool that supports the creation of ABCmod conceptual models is 
also currently under development.
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7
Conceptual Modeling Notations 
and Techniques

N. Alpay Karagöz and Onur Demirörs

7.1 Introduction

Conceptual modeling is a tool that provides a clear understanding of the tar-
get domain or problem. In the simulation system development life cycle, con-
ceptual models should be captured early based on project objectives defining 
what is intended and then should serve as a frame of reference for the subse-
quent development phases. The conceptual model can be interpreted as part 
of a problem-specification process and defined as a simplified representa-
tion of the real system having the following features: (a) includes structural 
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and behavioral capabilities, assumptions and constraints, (b)  provides an 
 implementation independent representation by utilizing a  common lan-
guage for both the client and the modeler, (c) can be used as a basis for early 
verification and validation of the simulation system and, (d) is produced as a 
result of an iterative process.

Although there are various approaches offering useful insights on the 
usage of the conceptual models in the simulation system development lifecy-
cle, they do not provide a systematic guidance on how to develop a concep-
tual model Robinson (2007a). A systematic guide should include a structured 
method for developing conceptual models, a notation for  representing 
conceptual models and preferably a software tool that supports this nota-
tion. Systematic guidelines provide an orderly way for establishing and 
 maintaining  conceptual models and create the link between the conceptual 
analysis phase with the other activities of the simulation system development 
lifecycle. Modeling notations are the communication media among the dif-
ferent stakeholders in a simulation system development project. It is essential 
to use a syntactically and semantically well-defined notation for developing 
consistent, verifiable, and easy-to-understand conceptual models.

This chapter first outlines the uses of conceptual modeling in the simulation 
system development lifecycle and describes some of the existing approaches, 
frameworks and methods related with conceptual modeling. Although these 
approaches, frameworks, and methods may include extensive facilities, this 
chapter focuses specifically on their conceptual modeling-related aspects. 
FEDEP, CMMS (FDMS), DCMF, Robinson’s framework, and KAMA frame-
work are described, and a comparison of these methods is provided together 
with future work opportunities.

7.1.1 u ses of Conceptual Modeling

As Lacy has stated in Lacy et al. (2001), the conceptual model is an overloaded 
term. There exist many close but different definitions, which will not be elab-
orated in this chapter. Most of these definitions agree that it is essential to 
develop conceptual models at the early stages of simulation system develop-
ment life cycle (Balci 1994, DMSO 1997, Pace 1999, IEEE 2003, Mojtahed et al. 
2005). Conceptual models are utilized for different purposes in simulation 
system development lifecycle. Conceptual models are developed to better 
understand the intended system, depict the requirements of the simulation 
system or as a basis for verification and validation of simulation systems.

Conceptual modeling is related with the problem domain and can be used 
as a tool to identify the components of the problem in terms comprehensible 
to both modelers and domain experts (Sargent 1987, Johnson 1998, Mojtahed 
et al. 2005, Robinson 2007b). Robinson highlights the importance of following 
a structured problem definition process in order to define a combined view 
effectively. He describes possible scenarios in understanding the problem 
situation and offers simple methods. In cases where the “problem situation is 
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neither well understood nor [clearly] expressed,” he suggests that formal prob-
lem structuring methods should be utilized (Balci and Nance 1985, Robinson 
2007b) define a methodology for problem formulation in simulation system 
development. Mojtahed et al. (2005) take this approach one step further and 
treat the conceptual analysis phase as a knowledge engineering activity.

Problem definition in simulation system development is a part of the 
requirements analysis phase; therefore conceptual models are the products 
of this phase. Specifications, assumptions, and constraints related with the 
domain of interest should be included in the conceptual model. These speci-
fications may include the entities, tasks, actions, and interactions among the 
entities, which will form a basis for the design phase (DMSO 1997). Pace (1999) 
describes the conceptual model as a bridge between requirements analysis 
and design phases. Since the boundaries of these phases cannot be sharply 
defined, there is confusion over whether the conceptual model is a product 
of the user or the designer (Haddix 1998). In order to reduce this confusion, 
Haddix defines a conceptual model as “the ultimate definition of the require-
ments” and uses another term, conceptual design, to mean “initial descrip-
tions of the system’s implementation.” However, SISO (2006a) disagree with 
these definitions in its BOM (Base Object Model) standard, stating that the 
BOMs are defined to “provide an end-state of a simulation conceptual model 
and can be used as a foundation for the design of executable software code 
and integration of interoperable simulations.”

Being a product of the requirements analysis phase, conceptual models 
should be independent of the software design and implementation decisions 
(Sheehan 1998, Pace 1999a, IEEE 2003). This aspect of the  conceptual model 
is based on a software development viewpoint. Johnson (1998) introduces a 
slightly different aspect of the conceptual model as providing a “simulation-
neutral view of the real world.” He suggests that the simulation system– 
specific attributes, even if they are not related with the design phase, should 
be kept out of a conceptual model. Thus, the conceptual model should include 
the definitions of a simulation system and it can be realized by  different 
simulation implementations.

It is an established practice in the software engineering field to initiate 
verification and validation activities as early as possible in the software 
development life cycle. Software requirements specification is used for 
ensuring that the developers are producing what the customer really wants. 
Similarly, early validation of a simulation system is essential for the  success 
of a simulation system development project. Conceptual models can be used 
as a basis for verification, validation and accreditation activities (Sargent 
1987, Haddix 1998). Sargent underlines that the conceptual model should be 
structured enough to provide means for validation. However, a more thor-
ough validation will be possible using experimentation after the  simulation 
system has been completed. Any defects found during verification and 
 validation activities should be corrected by revisiting the prior phases 
including the conceptual modeling phase. Hence, conceptual modeling is 
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not a one shot process but rather an iterative one that should be performed 
in many cycles throughout a simulation system development study (Balci 
1994, Willemain 1995).

7.2  Conceptual Modeling Frameworks, 
Notations, and Techniques

Numerous framework definitions have been proposed covering the vari-
ous perspectives established in the modeling and simulation community on 
conceptual modeling. The CMMS (Conceptual Models of the Mission Space) 
project originated by the US Department of Defense is one of the first initia-
tives providing detailed guidance on conceptual model development activi-
ties. Prior to this work, there were detailed framework definitions (Shannon 
1975, Balci and Nance 1985, Zeigler et al. 2000) regarding the whole simula-
tion development lifecycle, but with less guidance on the conceptual mod-
eling phase. The latest framework definition, which belongs to Robinson, 
includes detailed definitions for developing conceptual models Robinson 
(2007b). Robinson’s work is distinct from others in that it is based on the 
business-oriented rather than the military domain.

The conceptual modeling phase begins with understanding the prob-
lem situation and defining the context (DMSO 1997, Pace 1999a, IEEE 2003, 
Mojtahed et al. 2005, Robinson 2007b). The context definition phase includes 
determining the simulation system objectives, identifying the authoritative 
information sources and defining the assumptions and constraints used to 
develop the conceptual model to satisfy the simulation system objectives. 
This context definition is called as mission space (DMSO 1997, Pace 1999a, 
1999b, IEEE 2003, Mojtahed et al. 2005) underlines the importance of record-
ing a history of changes made on the assumptions and constraints. The next 
phase is developing the content, which includes defining the entities, tasks, 
interactions, inputs, outputs and relationships among all these elements. 
The output of this phase may be structured information represented in plain 
text, tables or diagrams that will provide a basis for understanding, sharing, 
and reviewing.

Although a well-defined representation technique is necessary, some 
frameworks prefer not to impose a specific conceptual modeling notation 
(Pace 1999b, IEEE 2003, Robinson 2007b) describes four approaches for docu-
menting conceptual models, which are ad hoc method, design accommoda-
tion, CMMS paradigm, and scientific paper approach, all based on free text 
descriptions. Robinson (2007b) uses a tabular structure for representing con-
ceptual models, while also mentioning the usefulness of the diagrammatic 
representation such as process flow diagrams (Robinson 2004). However, the 
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free text notation causes ambiguous and recurrent definitions, is unsuitable 
for machine interpretation, and does not provide adequate guidance to the 
modeler (Sudnikovich et al. 2004). Recent studies promote the utilization 
of UML and SysML for conceptual modeling as stated in Borah (2007) and 
Globe (2007). BPMN and IDEF1X are two other alternative notations that are 
explained in BPMI (2004) and IEEE (1998). Ryan and Heavey (2006) use simu-
lation activity diagrams. These notations provide different approaches; UML 
follows a more object-oriented approach, BPMN is more process-oriented and 
IDEF1X is a more data-oriented approach. Mojtahed et al. (2005) introduced 
the KnowledgeMetaMetaModel (KM3) as both a language and a tool to con-
struct conceptual models. They state that their intent in developing KM3 was 
not to construct a unified model description language, but rather provide a 
way to “capture system structures and behavior in an object-oriented and 
rule-based way.” The abstract syntax of KM3 is defined as a class-diagram 
and the concrete syntax is textually represented. Mojtahed et al. (2005) state 
that various graphical representations can be used; however, they do not 
define a method explaining how to associate these graphical representations 
with the concrete syntax.

Shannon (1975) claims that modeling is more of an “art” than “science”; 
therefore, it is generally assumed difficult to define methodical ways to 
develop conceptual models. However, following disciplined and systematic 
methods leave more room for creative skills by reducing the amount of rou-
tine work. The evolution of newer engineering fields, such as systems and 
software engineering has shown that using well-defined modeling notations, 
following defined processes and utilizing software tools definitely improve 
effectiveness. Hence, conceptual modeling frameworks should include these 
three elements.

Robinson (2007b) mentions a range of other methods and notations that are 
used to represent conceptual models. Process flow diagrams, activity cycle 
diagrams, Petri nets, event graphs, digraphs, the UML (Unified Modeling 
Language), object models and simulation activity diagrams are examples of 
these notations. UML is one of the most popular modeling languages used 
for analysis and design of software. As a result of its success in the soft-
ware modeling field, UML has been utilized in domains other than software 
such as systems modeling, business process modeling, data modeling and 
software process modeling. Although UML and SysML (System Modeling 
Language), which is an extension of UML, have also been used for develop-
ing conceptual models, they have not been extensively used (Richter and 
Marz 2000, Globe 2007).

7.2.1 KAMA Conceptual Modeling Framework

KAMA is a framework for developing conceptual models of the mission 
space that includes a process definition (method) for guiding the conceptual 
modelers and the domain experts, a notation for representing the conceptual 
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models and a tool for supporting the process and the notation (Karagöz and 
Demirörs 2007, Karagöz 2008). It was developed as part of a research project 
performed with the collaboration of the academia, industry and military and 
the framework was validated through case studies (Karagöz 2008) and real 
life simulation system development projects (Karagöz et al. 2008).

7.2.1.1 KAMA Method

The KAMA method consists of four tasks that are depicted as a task flow 
diagram in Figure 7.1. The ellipses represent the tasks to be performed by 
the roles, which are represented as stick figures connected to the tasks with 
dashed arrows. The inputs to and outputs from the tasks are represented by 
work products that are shown as rectangles connected to the tasks with dot-
ted arrows. The straight arrows represent the control flow, and the variations 
in this flow are shown by diamond-shaped decision points. The modeler can 
identify variations at these decision points; however, the outgoing control 
flows must have mutually exclusive guard conditions. These tasks are per-
formed with the collaboration of the conceptual modeler, the domain expert, 
the sponsor and the reviewer.

The first task is knowledge acquisition (KA) about the mission space for 
which a conceptual model will be developed. As the modeler will reflect her 
knowledge and experience about the domain onto the conceptual model, it is 
essential that she use the right and accredited knowledge resources.

The first activity in this task is to identify the high-level simulation sys-
tem objectives that should be defined in terms of units as measurable as 
possible.

The second activity is to define the boundaries of the mission space aligned 
with the simulation system objectives. This may include the  high-level needs, 
assumptions and constraints of the sponsor, the fidelity requirements of the 
simulation system, and the risks related with this information. Identifying 
the sources of authoritative information, analyzing these information sources 
and searching for similar conceptual models are other activities performed 
in this task.

The second task is defining the context via mission space diagrams, which 
include missions, roles, objectives, measures and the relationships among 
them. The missions are high-level tasks that define the boundaries of the con-
ceptual model, which are then detailed by task flow diagrams. Each mission 
is related with an objective to assure that there is not any irrelevant concept 
within the mission space. The achievement of an objective is determined by 
evaluating the quantifiable measures that are linked to an objective.

After the modeler acquires information about the mission space and speci-
fies the context with the assistance of the domain expert, she develops the 
content. The behavioral features of the conceptual model are shown by using 
task flow diagrams and entity state diagrams. The structural features are 
shown by using entity-ontology, entity relationship, command hierarchy 
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and organizational structure diagrams. These diagram types are explained 
in the following section.

After the conceptual model has been finalized, the model is verified and 
validated with the cooperation of the modelers and domain experts. Both 
syntactic and semantic rules are checked during the verification process. 

Acquire knowledge

Verify and validate the model

Develop content

Define context

is model verified

is model validated

Modeller

Sponsor

SME

Sponsor

Reviewer

Modeller

SME

Modeller
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diagram

List of information
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Simulation
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Simulation
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report

YES

NO

YES

NO

Fig ur e 7.1
Flow diagram for the KAMA method. (Based on Karagöz, N.A., A Framework for Developing 
Conceptual Models of the Mission Space for Simulation Systems, PhD thesis, Middle East 
Technical University, Department of Information Systems, 2008.)
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Tanriover and Bilgen (2007) has proposed a three-step inspection approach 
for verifying the conceptual models developed using the KAMA framework 
(see chapter 15). Usually, the validation of a conceptual model is accomplished 
via walkthroughs in which the conceptual model diagrams are presented in 
a step-by-step manner and anomalies are recorded for further analysis and 
resolution.

7.2.1.2 KAMA Notation

The deficiencies of existing notations, such as the lack of domain-specific 
modeling approach, the inadequacy of the notations for representing the 
conceptual models and difficulties the domain experts face in understand-
ing ad hoc notations have all led to the design of the KAMA notation.

The conceptual models should serve the needs of the analysis phase and 
should be used as an input to the design phase of the simulation system 
development life cycle. In order to comply with the first need, the modeling 
notation should be usable and understandable by the domain experts and for 
the second need the developed models should be transferable to the design 
phase by some means. KAMA notation constitutes a domain-specific graphi-
cal modeling language designed for the conceptual modelers. The jargon of 
the conceptual modelers is taken into account in defining the language ele-
ments. It is based on UML to facilitate the transfer of the knowledge embod-
ied in the conceptual model to the simulation system design phase. As a 
further development on the framework, an extension for design is provided 
in Aysolmaz (2007). An easy-to-use domain-specific notation has been pro-
vided by modifying the syntax and semantics of some UML elements and by 
omitting complex structural and behavioral features.

The metamodel diagram of the KAMA notation includes all of metamodel 
elements that can be used within a KAMA conceptual model as shown in 
Figure 7.2. The KAMA metamodel uses packages and a hierarchical package 
structure to reduce complexity, promote understanding, and support reuse. 
The dependency of KAMA packages on the UML metamodel is encapsulated 
with the Foundation package, which includes metamodel elements that are 
directly inherited or derived from the UML metamodel. It is a subset of the 
UML and provides basic constructs for creating and describing metamodel 
classes for other KAMA packages.

The Mission Space package extends the Foundation package and includes 
metamodel elements that are used to represent the missions and tasks in a 
mission space. The Structure package is based on the Foundation package 
and includes the metamodel elements that are used to represent the static 
structure of a conceptual model. The metamodel elements and their relation-
ships in these packages are shown in Figure 7.3 and described in detail in 
Karagöz (2008).

There are seven types of diagrams used for representing the structural 
and behavioral views of KAMA conceptual models, which are mission space, 
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task flow, entity ontology, entity relationship, entity state, command hierar-
chy, and organization structure diagrams.

A sample mission space diagram presented in Figure 7.4, which looks sim-
ilar to a UML use case diagram, shows the high-level missions of a package 
in a simulation system. Three roles have been specified that are responsible 
for or in charge of realizing the missions. Roles may stand for real life people 
such as commander in our sample or actively participating entities such as 
a sensor or a platform. Perform Mine Hunting mission includes the Detect 
Mines mission and is extended by two different missions. The extending 
missions are (a) Hunt Mine With Unmanned Undersea Vehicle (UUV) and 
(b) Hunt Mine With Acoustic Mine. These missions share the same objec-
tive but use different techniques or tools. UUVs are used to destroy mines 
by remote operations. Acoustic mines are used to trigger and destroy other 
mines by making them explode using acoustic waves. For each mission to be 
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Fig ur e 7.2
KAMA metamodel elements. (From Karagöz, N.A., A Framework for Developing Conceptual 
Models of the Mission Space for Simulation Systems, PhD thesis, Middle East Technical 
University, Department of Information Systems, 2008.)



188 Conceptual Modeling for Discrete-Event Simulation

accomplished mines should be detected first, which means the inclusion of 
the Detect Mines mission. The “includes” relationship shows that the includ-
ing mission requires the execution of the included mission. At some point 
during the flow of the including mission, the Detect Mines mission will be 
called for execution. The KAMA framework requires that all of the missions 
be detailed using task flow diagrams. The two extending missions extend 
the Perform Mine Hunting mission at the task numbered 5 and specified as 
“extensionId” on the diagram. The “extensionId” is used when the extended 
mission has more than one extension points.

The missions are assigned “Objectives” that should be achieved for the 
successful execution of the mission. An objective can be shared among more 
than one mission, as is the case with the specified_duration objective. The 
achievement of an objective is determined by evaluating the quantifiable 
measures related with an objective. The measures elapsed time, detected 
area, and the number of mines detected are used to determine the success of 
the achievement of the specified_area objective. The unit of measure infor-
mation is stored as an attribute of each measure and is used as a parameter 
in the “performanceCriteria” attribute of the related objective. An example 
to this attribute may be “(number of mines detected > = 6) AND ((detected 
area > = 10 acres) OR (elapsed time = 2 hours)).”

The sample task flow diagram presented in Figure 7.5 shows the details 
of the mission Perform Mine Hunting. The flow of the tasks begins with the 
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Fig ur e 7.3
KAMA package hierarchy. (From Karagöz, N.A., A Framework for Developing Conceptual 
Models of the Mission Space for Simulation Systems, PhD thesis, Middle East Technical 
University, Department of Information Systems, 2008.)
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Fig ur e 7.5
Example task flow diagram. (From Karagöz, N.A., A Framework for Developing Conceptual 
Models of the Mission Space for Simulation Systems, PhD thesis, Middle East Technical 
University, Department of Information Systems.)
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arrival of the Mine Hunting Order input. All of these tasks except for “Detect 
mine” are realized by the Commander role as specified in the Mission Space 
diagram, therefore the “realizes” relation is shown only for the “Detect mine” 
relation on the diagram.

The shaded tasks denote the existence of task flow diagrams, which 
include the details of these tasks. The Mine Information output, which is 
partly produced by the Detect Mine task and then updated by the Identify 
Mine task, is used as an input to the “Determine estimated effective hunting 
method” task. The Hunt Mine task is an extension point with extensionId 
equals to five. The extensionId information is not shown on the diagram but 
recorded as an attribute of the task. The two extending missions that are 
shown in Figure 7.4 extend the Perform Mine Hunting mission depending 
on the selected hunting method. A Mine Hunting Report is produced as a 
result of the execution of the Hunt Mine task. The variations in the task flow 
diagram are represented with decision points, which may have any number 
of outgoing control flows. However, the guard conditions shown on each 
outgoing control flow must not contradict with each other.

7.2.1.3 KAMA Tool

In order to facilitate efficient utilization of the KAMA method and the 
notation, a tool was developed to support the conceptual modeler (Karagöz 
2008). It consists of a graphical modeling editor and a conceptual model 
repository. Conceptual modelers can define and manage conceptual model 
elements, develop and navigate in conceptual model diagrams, share con-
ceptual models via a common repository, perform search among the exist-
ing conceptual models and diagrams, so that they can look for reusable 
conceptual model elements and diagrams. The tool also provides basic con-
figuration management functionality such that versioning of conceptual 
model elements and diagrams, keeping change history records and base-
lining of conceptual models. Predefined verification rules can be executed 
by the tool and anomalies are reported. Conceptual model diagrams can be 
examined through different perspectives by using fish-eye and hyperbolic 
views. Conceptual model elements and diagrams can be exported and 
then imported as XML (Extensible Markup Language) files, which enables 
 sharing conceptual models with other modeling tools.

7.2.2 Federation Development and execution Process (FeDeP)

FEDEP (Federation Development and Execution Process) (IEEE 2003) defines 
the processes and procedures that are intended for HLA (High Level 
Architecture) (IEEE 2000) users. It does not aim to define low-level manage-
ment and systems engineering practices native to HLA user organizations 
but rather aims to define a higher-level framework into which such practices 
can be integrated and tailored for specific use. Single simulation system in 
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a federation is called a federate and federation can be defined as a set of 
simulation systems. Therefore, the federation conceptual model includes the 
conceptual models of the simulation systems that make up the federation. 
The purpose of FEDEP architecture is to facilitate interoperability among 
simulation systems and promote reuse of simulation systems and their 
components.

FEDEP provides process definitions that encourage the use of conceptual 
models in the simulation system development life cycle. These definitions 
have originated at the Department of Defense and then standardized by IEEE 
as recommended practices. The designers of HLA identified the need for a 
flexible process according to which HLA applications will be developed. The 
main idea was avoiding unnecessary constraints on the construction and 
execution processes because these processes could vary significantly within 
or across user applications. However, it was then realized that it is possible 
to define a process at a more abstract level which should be followed by all 
HLA developer organizations. Figure 7.6 shows the top level view of this 
FEDEP process flow which includes seven steps. The focus will be on the 
first two steps in the scope of this chapter.

Step 1—Define federation objectives: The federation user, the sponsor, and 
the federation development team define and agree on a set of objectives and 
document what must be accomplished to achieve those objectives. This step 
includes two key activities: (a) identify user/sponsor needs and (b) develop 
objectives. The aim of the first activity is to develop a clear understanding 
of the problem to be addressed by the federation; therefore it is essential 
for developing a valid conceptual model. This understanding is generally 
recorded as a “statement of needs” document, which may vary widely in 
terms of scope and degree of formalization.

Despite this variance, it is generally accepted that this document should 
at a minimum include; high-level descriptions of critical systems of interest, 
expectations about required fidelity and required behaviors for simulated 
entities, key events that must be represented in the federation scenario and 
output data requirements. In addition, the needs statement should indicate 
the constraints related with the development of the federation such as fund-
ing, personnel, tools, facilities, due dates, nonfunctional requirements, etc.

The needs statement is then analyzed and refined into a more detailed set 
of specific objectives for the federation. The aim of this activity is developing 
more concrete, complete and measurable goals and also performing an early 
assessment of feasibility of the federation and risks related to development. 
This activity requires a close collaboration between the federation sponsor 
and the federation developer.

Step 2—Perform conceptual analysis: The second step of FEDEP includes 
development of the conceptual model. FEDEP defines the conceptual model 
as “an abstraction of the real world that serves as a frame of reference for fed-
eration development by documenting simulation-neutral views of important 
entities and their key actions and interactions.” The federation conceptual 
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model is defined as “the document that describes what the federation will 
represent, the assumptions limiting those representations, and other capa-
bilities needed to satisfy the user’s requirements. Federation conceptual 
models are bridges between the real world, requirements, and design.”

In order to comply with these definitions, this step of the FEDEP process 
begins with developing federation scenarios that are based on the federation 
requirements. The relationship between the activities of this step, the con-
sumed inputs and produced outputs are depicted in Figure 7.7. Federation sce-
narios define the boundaries of conceptual modeling activities. Authoritative 
information sources should be identified prior to scenario construction. A 
federation scenario includes “the types and numbers of major entities that 
must be represented by the federation, a functional description of the capa-
bilities, behavior, and relationships between these major entities over time, 

1—Define federation
objectives

Inputs: overall plans, existing
domain descriptions,

information on available
resources 2—Perform conceptual

analysis

Inputs: existing scenarios,
authoritative domain
information, existing
conceptual models

3—Design federation

4—Develop federation

5—Plan, integrate and
test federation

6—Execute federation
and prepare outputs

7—Analyze data and
evaluate results

Fig ur e 7.6
FEDEP high-level process flow. (Reproduced from IEEE Computer Society, IEEE 1516.3, 
Recommended Practice for High Level Architecture (HLA) Federation Development and 
Execution Process (FEDEP), 2003.)
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and a specification of relevant environmental conditions that impact or are 
impacted by entities” in the federation. Initial conditions (e.g., geographi-
cal positions for physical objects), termination conditions, and specific geo-
graphic regions should also be provided.

Following the scenario definition, a conceptual representation of the 
 problem space is developed based on the interpretation of the user needs 
and federation objectives. The federation conceptual model provides 
an  implementation-independent representation that serves as a vehicle 
for  transforming federation objectives into functional and behavioral 
 descriptions for system and software designers. The model also provides 
a crucial traceability link between the stated federation objectives and the 
eventual design implementation. This model can be used as a basis for the 
later federation development steps and can highlight problems early through 
a validation process that involves the user/sponsor.

The federation conceptual model development activities start with defining 
entities, actions and the assumptions and limitations regarding these. Defining 
entities include identifying static and dynamic relationships between entities, 
and identifying the behavioral and transformational (algorithmic) aspects of 
each entity. Static relationships may include association that shows a simple 
relationship among any entity, generalization that shows is-a relationship, 

2.1—Develop (federation)
scenario

Inputs: Federation
objectives, existing

scenarios, authoritative
domain information

2.2—Develop federation
conceptual model

Inputs: Existing conceptual
 models, developed
federation scenario

2.3—Develop federation
requirements

Inputs: Federation
objectives, developed
federation scenario,
developed federation

conceptual model

Fig ur e 7.7
Perform conceptual analysis steps. (Reproduced from IEEE Computer Society, IEEE 1516.3, 
Recommended Practice for High Level Architecture (HLA) Federation Development and 
Execution Process (FEDEP), 2003.)
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and aggregation that shows part-whole relationship. Dynamic relationships 
may include temporally ordered sequences of entity interactions with associ-
ated trigger conditions. The characteristics of entities and interaction param-
eters used among entities may also be defined during this activity. FEDEP 
does not impose any specific notation for representing conceptual models, but 
states that it is important that this notation should be appropriate to develop 
conceptual models that provide insight into the real-world domain.

Since the objective of a conceptual model is to represent the real-world 
domain, it should be reviewed by the user/sponsor to ensure the adequacy 
of domain representation. As most of the researchers have pointed out, con-
ceptual modeling is not a one-shot activity but an iterative one, therefore any 
changes caused by these reviews should be performed under control. As the 
conceptual model evolves, it is transformed from a general representation of 
the real-world domain to a more specific expression of the capabilities of the 
federation as constrained by the federates and available resources.

FEDEP is one of the first initiatives to emphasize the position of concep-
tual modeling in the simulation system development lifecycle, together with 
its boundaries, inputs and outputs. However, it does not provide sufficient 
detail on conceptual modeling to enable modelers to develop conceptual 
models. Not imposing a modeling notation enables FEDEP to be flexible and 
convenient for strategic level modeling, but on the other hand decreases its 
usability, especially at the tactical level. Modelers need more detailed guid-
ance and illustrative conceptual models. They need to see the concrete rela-
tionship between conceptual model and simulation system requirements 
and design and data to show the return on investment resulting from the 
utilization of a conceptual model.

7.2.3 Conceptual Models of the Mission Space (CMMS)

The US Defense Modeling and Simulation Office (DMSO) has initiated a 
project to promote the use of conceptual models and has led an effort to pro-
vide an integrated framework and toolset for developing CMMS (Conceptual 
Models of the Mission Space) (DMSO 1997). The main goal of the project 
was to resolve the interoperability problems among many simulation sys-
tem development projects developed in many different platforms. DMSO 
defined the CMMS as “the first abstractions of the real world that serve as a 
frame of reference for simulation system development by capturing the basic 
information about important entities involved in any mission and their key 
actions and interactions.” CMMS provides the following:

A disciplined procedure by which the simulation developer is system-•	
atically informed about the real-world problem to be synthesized
An information standard the simulation domain expert employs to •	
communicate with and obtains feedback from the military opera-
tions domain expert
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A real world, military operations basis for subsequent, simulation-•	
specific analysis, design, and implementation, and eventually verifi-
cation, validation, and accreditation/certification
A singular means for identifying reuse opportunities in the even-•	
tual simulation implementation by establishing commonality in the 
real-world activities

The objectives of the CMMS are to “enhance interoperability and reuse 
of models and simulations by accessing descriptions of real-world opera-
tional entities, their actions, and interactions through the identification of 
authoritative sources of information for models and simulations and the 
integration of information from independent KA sources” as specified in 
DMSO (2007).

CMMS defines mission spaces for each mission area and aims to develop 
conceptual models for these mission spaces. The MSM (Mission Space 
Model) is a by-product of a simulation’s front-end analysis; it is a simulation 
and implementation independent functional description. These functional 
descriptions represent a view of real-world operations, entities, actions, tasks, 
interactions, environmental factors, and relationships among all of them. 
Since CMMS is defined for all stakeholders, it serves as a bridge between 
the domain experts and the developers. Domain experts act as authoritative 
knowledge sources when validating the MSMs.

CMMS is a framework that includes tools for gathering and storing 
knowledge, reusing this knowledge and providing a common repository for 
information storage and tools for conversions among various model repre-
sentation notations. CMMS is composed of four main components:

Mission space models: consistent representations of real-world mili-•	
tary operations
Technical framework: standards for knowledge creation and •	
 integration, includes:

A common syntax and semantics for describing the mission •	
space
A process definition for creating and maintaining conceptual •	
models
Data interchange standards for integration and interoperability •	
of MSMs

Common repository: a DBMS for registration, storage, management, •	
and release of conceptual models
Supporting tools, utilities, and guidelines•	

According to CMMS process definition, the four basic steps in conceptual 
model development are as follows:
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Collect authoritative information about the simulation context.•	
Identify modeling elements (entities and processes) to be represented •	
in the simulation system.
Develop modeling elements (representational abstraction).•	
Define interactions and relations among modeling elements.•	

CMMS has been renamed as FDMS (Functional Descriptions of the Mission 
Space) but the project faded away by the end of 1999 and the term FDMS also 
have fallen out of use within a few years after that.

The CMMS project focused on resolving the interoperability issues caused 
by the usage of many different conceptual modeling notations such as IDEF1X 
(IEEE 1998), notations provided by general purpose case tools and legacy text 
formats by establishing a common data interchange format. The technical 
framework included a common data dictionary for representing conceptual 
models, common representation templates, and tool-specific style guides for 
managing various modeling tools used for conceptual modeling.

7.2.4 Defense Conceptual Modeling Framework (DCMF)

In 2003, The Swedish Defense Research Agency initiated a project to fur-
ther study the conceptual modeling concepts and improve the CMMS. As 
they made progress in their research, they realized that they were mov-
ing further from the original CMMS concepts and renamed the project as 
DCMF (Defense Conceptual Modeling Framework) (Mojtahed et al. 2005). 
The major tasks were analyzing the CMMS in depth, studying the KA and 
elicitation phases, analyzing the language issues such as ontology, termi-
nology, common syntax and semantics and developing new methods when 
required.

As part of the project, Lundgren et al. (2004) identified the problems and 
limitations related with CMMS and proposed solutions to these problems as 
listed below:

Unsupported KA: A complete methodology for KA in this domain •	
should be developed.
Lack of clarity of modeling elements: Modeling elements should be •	
logically grouped by using metalevels or abstraction levels.
Need for alternative knowledge representations (KR): A new method •	
should be developed for KR.
Limitations of processes: An action-centric approach should be used •	
to add dynamic knowledge without limiting the process.

Based on these findings, the objectives of DCMF were defined as “to cap-
ture authorized knowledge of military operations, to manage, model and 
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structure the obtained knowledge in an unambiguous way; and to pre-
serve and maintain the structured knowledge for future use and reuse.” 
DCMF stipulates that the conceptual model should be “(a) well documented, 
(b) readable and usable for a person as well as a machine, (c) composable 
(includes units that can be composed to form more comprehensive concep-
tual models), (d) traceable the whole way back to the original sources, and 
finally (e) usable as a basis for simulation models.” Although the DCMF doc-
umentation does not include a thorough definition, the simulation model 
is described as a more detailed model, which may include design-specific 
information built on the conceptual model.

The main purpose of the DCMF can be described as “to facilitate and sup-
port development, reuse and interoperability between simulation models.” 
DCMF accomplishes this purpose by (a) providing a common language for 
all stakeholders and serving as a bridge between the military experts and 
the developers, (b) creating libraries of validated conceptual models with 
certified quality levels, and (c) using the KM3 language as an enabler for 
transforming the conceptual model into other formats.

The DCMF project outcomes included a process definition, a language 
definition, and a list of available tools and analysis methods related with 
conceptual modeling. One of the major improvements of DCMF over 
CMMS is DCMF’s knowledge engineering focus on the conceptual analy-
sis phase. The DCMF process consists of four main phases as shown in 
Figure 7.8.

Knowledge Acquisition (KA) is the learning phase that focuses on acquir-
ing information and knowledge. DCMF defines this phase in 3 steps; the 
first step includes the determination of the focused context, the second step 
is the identification of the authorized knowledge sources, and the third step 
includes the actual acquisition of knowledge, which is sometimes called 
knowledge elicitation. DCMF suggests the use of structured and well-doc-
umented techniques for knowledge elicitation such as interviews, prototyp-
ing, questionnaires, etc. It is also noted that these kinds of analyses may 
include linguistic processes. A typical linguistic process includes phonetic, 
lexical, morphological, syntactic and semantic analyses of existing docu-
ments or voice records that are used as information sources.

Knowledge Representation (KR) phase aims to analyze the structure of 
the information and formalize the acquired information. The human read-
able and probably ambiguous information is transformed into a machine 

Knowledge
acquisition

Knowledge
representation

Knowledge
modeling

Knowledge
use

Fig ur e 7.8
DCMF process: Main phases. (Reproduced from Mojtahed, V., Lozano, M.G., Svan, P., Andersson, 
B., and Kabilan, V., Technical Report, FOI-R—1754—SE, 2005.)
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readable and unambiguous format. This can be done by using methods like 
SPO (Subject-Predicate-Object), 5Ws (Who-What-Where-When-Why), and 
KM3, which are explained in Mojtahed et al. (2005). These analyses will 
result in an ontology, which consists of the context of the domain, the defini-
tions of terms and their relationships and interactions.

Knowledge Modeling (KM) phase focuses on the semantic analysis and 
modeling of the information. Although previous KR phase may produce 
usable artifacts, building a common general model at the right level of 
abstraction requires further study. Different models can be generated based 
on the same set of data. These models should be suitable for future use and 
reuse. In order to provide this facility, the DCMF proposes using knowledge 
components that represent smaller knowledge parts. This approach pro-
vides flexibility, increases the rate of reuse and composability of conceptual 
models. Knowledge modeling also involves the merging of these knowledge 
components or conceptual models; therefore it will be a good idea to store 
these artifacts in a knowledge repository.

The last phase of the DCMF process is Knowledge Use (KU), which deals 
with the actual use of the artifacts produced as a result of the previous 
phases. DCMF suggests using effective mechanisms that provide different 
visualizations of the knowledge for various users. These users may include 
the sponsor, consumer, producer and controller. The original intent of a 
knowledge component and any changes made to it should be recorded for 
an effective usage mechanism.

KM3 is at the same time a specification, a tool and a language. KM3 is a 
specification for the creation of generic and reusable conceptual models. It is 
a tool for structuring knowledge in the form of generic templates. It is a com-
mon language that enables different stakeholders in developing conceptual 
models. KM3 follows an activity-centric approach and represents activities 
as KM3 actions. KM3 specification includes both static and dynamic descrip-
tions. The static descriptions are specified by the attributes of an object 
whereas the dynamic descriptions are specified by the inclusion of rules into 
the object descriptions. All changes to model elements are described by rule 
definitions, which specify the conditions under which an action starts and 
ends. A rule is composed of an activity role and an atomic formula. Atomic 
formulas can be combined conjunctively (OR-Connections) or disjunctively 
(AND-Connections) to create complex formulas.

7.2.5 base Object Model (bOM)

BOM (Base Object Model) is a SISO (Simulation Interoperability and 
Standardization Organization) standard that intends to “provide a com-
ponent framework for facilitating interoperability, reuse, and compos-
ability.” The SISO BOM Product Development Group produced the “BOM 
Template Specification” (SISO 2006a) and the “The Guide for BOM Use and 
Implementation” (SISO 2006b) for describing the BOM related concepts. The 
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objective of BOM is to encourage reuse, support composability, and help 
enable rapid development of simulation systems and simulation spaces.

BOM standard is compatible with the FEDEP definition and defines the 
conceptual model as “a description of what the [simulation or federation] 
will represent, the assumptions limiting those representations, and other 
capabilities needed to satisfy the user’s requirements.” BOMs are defined to 
“provide an end-state of a simulation conceptual model and can be used as 
a foundation for the design of executable software code and integration of 
interoperable simulations” in SISO (2006a). BOMs by definition are closer to 
the solution domain and the developer rather than the problem domain and 
the domain expert.

A BOM is composed of a group of interrelated elements, which are the 
model identification, conceptual model information, model mapping infor-
mation and object model definition as shown in Figure 7.9. The components 
of this template can be represented using tabular format or UML diagrams. 
In addition, the BOM DIF (Data Interchange Format) enables the transfer of 
the BOM information between tools. It should be noted that, although the 
BOM specification uses the HLA OMT (Object Model Template) constructs, it 
does not restrict the use of a BOM to HLA-specific implementations.

The model identification component is used to associate important identi-
fying information with the BOM. The conceptual model component includes 
different views to represent the conceptual model information. This infor-
mation should be transformed into an object model, which is preferably a 
composition of HLA object classes, interaction classes, and data types. In 
order to enable this transformation, the required mapping information is 
provided as Model Mapping component. The Lexicon component is used to 
document the terms and ensure that they are consistently used in the correct 
form.

Below, we review the components of a BOM, with an emphasis on the con-
ceptual model component.

7.2.5.1 Model Identification

One of the goals for using BOMs is to facilitate reuse; therefore each BOM has 
to contain a minimum but sufficient degree of descriptive information such 
as name, type, version, security classification, point of contact, etc. This infor-
mation is mostly based on the IEEE Std. 1516.2-2000 (IEEE 2000) and is repre-
sented as a table. Every BOM is required to have a Model Identification table 
that includes the name, type, version, point of contact, and other required 
information as specified in the IEEE Standard 1516.2-2000 (IEEE 2000).

7.2.5.2 Conceptual Model Definition

The conceptual model of a BOM describes how the pattern of interplay 
within the conceptual model takes place, the various state machines that 
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may be represented, the entity type and event types defined in the concep-
tual model. This definition is closely matched with the FEDEP steps related 
with conceptual modeling and provides a description of what the simulation 
component, simulation or federation “will represent, the assumptions limit-
ing those representations and other capabilities needed to satisfy the user’s 
requirements” (IEEE 2003).

The pattern of interplay template component is used to identify the sequences 
of actions necessary for fulfilling the pattern of interplay that may be repre-
sented by a BOM. In addition to the main course of events, the variations and 
exceptions are also represented as pattern descriptions. A pattern of interplay 
may be composed of many pattern actions each of which includes the sender 
entity, the receiver entity and optionally the variations and exceptions.

The state machine template component is used to identify the behavior 
states of a conceptual entity that are required to support one or more pat-
terns of interplay. BOM DIF defines the State Machine Table for describing 
one or more state machines. A state machine table includes the name of the 
state machine, the conceptual model entities that support the states defined, 
and the behavior states that are supported by a conceptual entity. A name 
and exit condition is defined for each state. Each exit condition identifies an 
exit action and the next state upon satisfying the exit action.

The entity type template component provides a mechanism for describing 
the types of entities. It is used to identify the conceptual entity types required 
to support the patterns of interplay and executing the various state machines. 
An entity type may play the role of a sender or receiver in a pattern of inter-
play or may be associated with a state machine. The entity type is identified 
by a name and associated characteristics. An example entity type may be a 
“waiter” having the “name” and “assigned tables” as characteristics.

The event type is used to “identify the type of conceptual events used to 
represent and carry out the actions variations and exceptions within a pat-
tern of interplay.” The two types of BOM events are BOM Triggers and BOM 
Messages, which represent undirected and directed events, respectively. In an 
undirected event the sender of the event is known but the receiver is not spec-
ified, so that any entity that has interest may receive the event. In a directed 
event both the sender and receiver entities are specified. A BOM trigger is an 
undirected event that may occur as a result of a change in the state of an entity 
and affects other entities that have interest in such observable changes. For a 
BOM trigger, the source entity and the trigger condition are known, but the 
target entities cannot be identified. A BOM Message is a directed event that 
identifies both of the source and target entities. A Message is an event type 
with a target entity, and a trigger is an event type with a trigger condition.

7.2.5.3 Model Mapping

The model mapping template component provides a mechanism for map-
ping between the elements of the conceptual model and the class structure 
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elements of the Object Model Definition. The two types of mapping sup-
ported are Entity Type Mapping and Event Type Mapping.

The entity type mapping is used to map entity types and their associated 
characteristics to class structures. An entity type is mapped into an HLA 
object class or HLA interaction class, and characteristics of an entity type are 
mapped to HLA attributes or HLA parameters.

An event type is mapped into an HLA object class or HLA interaction 
class. Source characteristics, target characteristics, content characteristics, 
and trigger condition of an event type are mapped to HLA attributes or HLA 
parameters.

These mappings are means for transforming conceptual model elements 
into object model elements.

7.2.5.4 Object Model Definition

The object model definition defines the structure of an object and interac-
tion class, and their associated attributes and parameters. HLA object classes 
include HLA attributes and HLA interaction classes include HLA param-
eters. This BOM component also includes the inheritance relationships 
between classes.

7.2.5.5 BOM Integration

As BOM Specification explains, BOMs are used to represent the conceptual 
models in accordance with the FEDEP steps. These steps include; selecting 
BOMS that support an aspect of a conceptual model among the existing 
ones, developing new BOMs if required, integrating these BOMs to create 
BOM assemblies and generating Federation Object Model (FOM)/Simulation 
Object Model (SOM) from these assemblies. BOM specification also admits 
that although use of HLA is not a mandatory subsequent step, it is likely 
that BOM assemblies are intended to support an HLA based federation. 
This  feature of BOM makes it dependent on the simulation specifications, 
which contradicts with the simulation-independency of a conceptual model. 
However, BOM can be used as an effective tool to transform conceptual 
models of the mission space into simulation space object models.

The BOM Template Specification (SISO 2006a) defines the format and syn-
tax for describing the elements of a template for representing BOMs. It speci-
fies the syntax and the semantics of the elements of BOM. This specification 
also provides a DIF for representation of BOMs using XML. The “Guide for 
BOM Use and Implementation” (SISO 2006b) introduces methodologies for 
creating and implementing BOMs in the context of a larger simulation envi-
ronment. The document provides guidance for BOM development, integra-
tion and use in supporting simulation system development. The guide also 
includes examples of UML diagrams that may be used to represent BOM 
tables.
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7.2.6 r obinson’s Framework

Robinson discussed the meaning of conceptual modeling and the require-
ments of a conceptual model (Robinson 2007a) and then defined a framework 
for conceptual modeling (Robinson 2007b) in a series of papers. The frame-
work is also described in Chapter 4. He defines conceptual modeling as the 
process of abstracting a model from a real or proposed system. Besides this 
definition, Robinson describes the following four requirements of a concep-
tual model; validity, credibility, utility and feasibility, which should be har-
monized with the need to develop the simplest model possible to solve the 
project goals (see Chapter 1).

The conceptual modeling process in Robinson’s framework begins with 
developing an understanding of the problem situation. Depending on the 
domain experts’ knowledge and expression capability on the problem situa-
tion, different methods may have to be followed. The domain experts generally 
believe that they have a sound understanding of the problem situation and they 
can express it effectively. However, after an analysis study, it is often observed 
that there are missing parts in their state of knowledge. Robinson emphasizes 
the difficulty arising from the fact that each client and domain expert may 
possess a different view of the problem. In order to overcome these obstacles, 
Robinson suggests that modelers use formal problem structuring methods.

Determining the modeling and general objectives is a critical task for 
developing the intended model. These objectives are apparently related with 
the aims of the organization. Although the modeling activity by itself pro-
vides useful insight for the organization, the real benefit is in the learning 
that can be gained from using the model. Robinson describes an objective 
as composed of three components; which are achievement, performance, 
and constraints. The success of a simulation study is tightly related with the 
 fulfillment of the client, which can be ensured by defining appropriate objec-
tives. However, neither the problem situation nor the objectives are static, 
and therefore subject to change. Besides the modeling objectives, Robinson 
points out the importance of general project objectives such as flexibility, 
ease-of-use and run-speed. These kinds of general project objectives will 
have impact on the conceptual model design.

Robinson defines the model outputs as the responses expected from the 
system. The responses are used to identify whether the modeling objectives 
have been achieved and to point out the reasons why the objectives have not 
been achieved. Responses are generally reported in the form of numerical 
data or graphical charts. The model inputs are called as experimental factors, 
because these are the model data that can be changed to achieve the mod-
eling objectives. The experimental factors are also closely related with the 
modeling objectives, which implies that a change in the objectives requires a 
change in the experimental factors.

The next step is determining the model scope and the model’s level of 
detail. The former defines the boundaries of the model whereas the latter 
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describes the depth of the model. The scope of the model can be described in 
terms of the entities, activities, queues and resources. The level of detail for 
these components can be determined by the judgment and past experience 
of the modeler, analysis of preliminary data and prototyping. During this 
process various assumptions and simplifications may be made. These are 
recorded and classified as high, medium, or low depending on their impact 
on the model responses.

Robinson demonstrates this framework with a modeling application at 
Ford Motor Company engine assembly plant (Robinson 2007b). He proposes 
assessing the model by checking the validity, credibility, utility and feasibil-
ity of the model. Robinson also points out the importance of expressing the 
modeler’s mental model as a communicative model and states the useful-
ness of diagrammatic representations for this purpose. He lists some of the 
possible diagrammatic notations, however, does not impose any of them for 
use with his framework. Robinson defines the conceptual modeling as art 
and states that the framework brings some discipline to that art. The artistic 
characteristic of conceptual modeling, combined with the different perspec-
tives of the modelers and the domain experts make it impossible to define an 
absolutely right conceptual model. Therefore, Robinson suggests a concep-
tual modeling framework should provide a means for communicating and 
debating on conceptual models rather than aiming to develop a single best 
conceptual model.

7.3 A Comparison of Conceptual Modeling Frameworks

A conceptual modeling framework that includes a method definition, a nota-
tion and a supporting tool is essential for effective implementation of the 
conceptual analysis phase. The method definition should include the process 
steps in detail; the notation should provide an easy-to-use interface for both 
the conceptual modelers and the domain experts and the tool should support 
both the method and the notation. All of the abovementioned frameworks 
and methods point out the requirements of a conceptual model, the inputs 
needed and the likely outputs that are produced. A comparison of concep-
tual modeling frameworks is provided in Table 7.1 in terms of the framework 
parameters mentioned above.

FEDEP includes a high-level overview of the conceptual analysis phase by 
providing the boundaries of the phase, required inputs and the produced 
outputs; however detailed guidance for developing conceptual models is 
lacking. The CMMS approach was promising when the objectives are consid-
ered, however the project faded away without being able to provide a com-
mon syntax and semantics for conceptual modeling. BOM does not include 
a detailed process definition for developing conceptual models, but there 
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is active ongoing work on the tool support. DCMF complies with the three 
parameters of the framework definition with a focus on the KA activities of 
the conceptual modeling phase. Robinson does not define a specific notation 
for conceptual modeling but proposes using diagrammatic representation 
techniques and does not mention about the tool support. KAMA defines a 
notation specific to the conceptual modeling domain and includes a detailed 
process definition. The KAMA tool can be used for developing, sharing and 
verifying conceptual models.

All of these frameworks have some common limitations. It is difficult to 
provide a generic framework that is appropriate for all types of problem 
domains, because of their distinct requirements and objectives. Metamodel 
based notations may propose a solution to this problem by means of modifi-
able metamodels. However, in such a case the modelers should thoroughly 
analyze the tradeoff between a best-fit metamodel and a more general meta-
model that allows more flexibility and reusability.

Conceptual models represented in diagrammatic notations are known 
to provide better understanding and communication, however as these 

TAble 7.1

Conceptual Modeling Approaches

Approach Method/Process Notation Tool Support

FEDEP Includes a process 
definition intended for 
HLA

No specific notation is 
imposed

No tool support

CMMS (FDMS) Process definition does 
not include detailed 
guidance

Common lexicon is 
defined. Data 
Interchange Format 
is defined.

No tool support

DCMF Includes a process 
definition

Includes KM3 
notation for 
representing 
conceptual models

Existing UML 
modeling tools and 
ontology tools can 
be used

BOM Process definition does 
not include detailed 
guidance

Includes a text-based 
syntax and 
semantics definition. 
UML may also be 
used.

BOMworks tool has 
been developed 
(BOMworks 2009)

Robinson Includes a process 
definition

No specific notation is 
imposed, but 
diagrammatic 
notations are 
suggested

No specific tool is 
imposed. Existing 
graphical modeling 
tools can be used

KAMA Includes a process 
definition

UML-based graphical 
notation is defined

A graphical modeling 
tool has been 
developed (Karagöz 
et al. 2005)
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diagrams get complicated these advantages are lost and cognitive issues 
arise (Kılıç et al. 2008). Diagrams with dynamically adjusted abstraction lev-
els, or multidimensional viewing features may be utilized for overcoming 
these issues. The different perspectives of the conceptual modelers and the 
domain experts make it almost impossible to define the absolutely right con-
ceptual model, which may also be considered as a cognitive issue.
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8.1 Introduction

This chapter presents a methodology for the design and implementation of 
a discrete-event simulation model. It is not the only way to implement such 
a model, nor is it necessarily the best—but it is in use and it works. (It is also 
used for other types of study, although the general approach is modified to 
suit the method of analysis to be used.)

The methodology has been developed over a number of years through trial 
and error. Ideas have been culled from a variety of sources. Some have been 
tried, found not to be useful and have been dropped. Other ideas have been 
found useful and have been kept. Others have been modified or parts of 
them used. The resulting methodology covers all aspects of the design and 
development of a simulation model—from requirements through design and 
development to testing. Just as this methodology has been constructed from 
pieces taken from various sources, it is suggested that the reader take those 
elements of this approach that are useful to them and incorporate them into 
the reader’s own approach.

This approach is consistent with BS EN ISO9001—a quality assurance 
standard, although the details of the required procedures and documenta-
tion have been omitted for simplicity.

8.2 Software Project Life Cycle

The methodology presented here is based on the principle that a simulation 
model is a software application and that software engineering principles apply 
to its development. Simulation models tend to differ from most other software 
applications in that they generally have fewer data entities with simpler relation-
ships between them. On the other hand, simulations tend to have much more 
complex decision logic than other software applications. So, although general 
software engineering principles can be applied they need to be modified to take 
account of the simpler data entities and more complex decision logic.

The traditional software engineering iterative waterfall software life cycle 
has been found to be a good model for simulation model development. The 
life cycle has the following stages:

Requirements—what the model should do•	
Design—how it should do it•	

8.8.3 Simulation Activities .....................................................................225
8.8.4 Simulation Design ......................................................................... 226
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Implementation—developing the model to the design•	
Verification—testing that the model conforms to the design•	
Validation—testing that the model is fit for purpose•	
Use•	

The term iterative waterfall is derived as follows. “Waterfall” refers to the 
process of completing one stage of the software life cycle, including review 
and approval, before starting the next stage. “Iterative” recognizes the fact 
that, in practice, later stages can have an impact on earlier stages. Iteration 
involves going back to an earlier stage and modifying decisions made at that 
stage and then following the effects of those changes through subsequent 
stages until the current stage and desired outcome is reached. For example, 
it is often the case that initial testing will show that some aspect of the model 
has a greater impact on the results than initially anticipated and that that 
aspect needs to be modeled in greater detail. This may mean that one or 
more of the requirements need to be modified (or additional requirements 
added). It will certainly require changes to the design. The software life cycle 
is illustrated in Figure 8.1.

At the end of each phase, the outputs of that phase should be reviewed by 
an independent, technically competent reviewer. The review should compare 
the outputs of the phase with the outputs of the previous phase to ensure 
that they are consistent. The review should be documented.

Software engineering has proved the value of separating the design and 
development into a number of independent phases. The use of this approach 
for the design and development of many simulation models has proved that 
it is also valuable for simulation. The rest of this chapter looks at each of the 
phases in more detail.

8.3 Requirements

This section considers the requirements phase of the software project life 
cycle. We discuss the purpose of the Requirements Document and outline 
its contents.

The purpose of the requirements phase is to document the requirements 
for the model. This may sound obvious but it is important to consider why 
the model is required. In the commercial world, models are developed to 
help address a specific problem and that will define the timescales and bud-
get of the model development. It will also define the accuracy required from 
the project and hence the accuracy required from the model. The “Why?” 
is therefore to address some specific problem to the required accuracy and 
within the given timescales and budget. This also has implications for the 
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analysis method to be used. In general, the method used should be simplest, 
quickest and cheapest method that will answer the “Why?” question. The 
selection of the analysis method should be driven by the requirements and 
is a design decision. It is not part of the requirements.

The Requirements Document provides the following:

A clear statement of requirement against which to validate the model •	
(test whether it is fit for purpose)
A clear statement of what will and what will not be included in the •	
model, i.e., the breadth and depth of the scope of the model

Although the Requirements Document is not usually a deliverable, it 
is useful to provide a copy to the customer to review and approve. This 
ensures that the customer is aware of what the model will cover and what 
it will not. Since the Requirements Document includes a description of the 
system to be modeled, the review by the customer gives them a chance to 

Implement

Verification
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Project
management 

Fig ur e 8.1
The iterative waterfall software life-cycle model.
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correct the analyst’s understanding of the system and how it works. Since 
the Requirements Document is intended as a definitive statement of what 
the model will do it is important that the individual requirements be 
clearly identified—and ideally uniquely numbered for ease of reference. 
Requirements should be identified as mandatory, desirable or optional; 
defined as follows:

Mandatory requirements must be met. The model will fail Validation •	
if any of the mandatory requirements are not met.
Desirable requirements should be met where doing so will not •	
adversely affect timescales or budget.
Optional requirements may be met if doing so has little or no effect •	
on timescales or budget.

The words shall, should, and may, respectively, can be used in the formal 
statements of requirement to help differentiate between the requirement 
types.

The requirements phase does not include design decisions. All elements of 
the design must be left until the design phase.

8.3.1 Contents of the r equirements Document

The Requirements Document should include the following sections, which 
are described below:

Purpose of the Development•	
Stakeholders•	
Study Objectives•	
Overview of the System to be Modeled•	
System Perspective•	
General Requirements and Constraints•	
Specific Requirements•	

8.3.2 Purpose of the Development

This section contains a top-level statement of the “Why?” question. As men-
tioned several times already, and worth repeating again, the “Why?” question 
drives the whole of the development and use of the model. The Requirements 
Document should only contain statements of requirements that contribute to 
the “Why?” If something does not contribute to the “Why?” then it has no 
value. In fact, it will be counterproductive since it will add to the complex-
ity of the model and increase the time and cost of model development and 
testing—all for no benefit.
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A simple statement of the purpose of the development helps to focus 
attention on the important requirements and also provides help in decid-
ing what is important: “Does this contribute to the ‘Why?’ as stated in the 
purpose?”

It is worth emphasizing that the “Why?, ” as embodied in the statement of 
purpose in this section of the Requirements Document, is used throughout 
the development. At every stage of design and implementation, we should 
be asking, “Does this contribute to the ‘Why?’ Does it contribute to the 
purpose?”

Consider the following example from a past study:

The objective of the development is to be able to produce a realistic Recognised 
Theatre Logistics Picture (RTLP) to support the Future Logistics C2 Theme for 
a range of scenarios that involve a deployed Joint Force such that the RTLP can 
be used to make command and control (C2) logistics decisions.

This statement leaves a great many requirements still to be determined, e.g.:

Which scenarios•	
Which C2 decisions•	
What information will be required to make those decisions•	
How should the information be generated and displayed•	

However, a simple clear statement of the overall purpose provides a 
 framework against which the detailed requirements and design decisions 
can be set.

8.3.3 Stakeholders

This section should contain a list of the stakeholders, where a stakeholder 
is a person or organization with an interest in the development or use of 
the model. A stakeholder may be a person or organization with information 
about the system to be modeled.

8.3.4 Study Objectives

The study objectives are taken from the customer’s Statement of Work and 
are the customer’s stated objectives. Not all projects have a list of study 
objectives provided by the customer. The detailed objectives are sometimes 
unclear. In which case, a project start-up meeting may be required to discuss 
and clarify the study objectives (and document them in the minutes of the 
meeting). In either case, repeating (and expanding if necessary) the study 
objectives in the Requirements Document not only brings the relevant infor-
mation together in one place for ease of reference but also means that the 
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customer can confirm that the study objectives are correct (assuming that the 
document is reviewed by the customer).

The study objectives include timescales, available budget, and required 
accuracy.

8.3.5 Overview of the System to be Modeled

As the title of this section suggests, it contains a description of the real-world 
system that is to be modeled. By reviewing and approving the Requirements 
Document the customer confirms that the analyst’s understanding of the 
system is correct and complete.

The overview includes a statement of the scope of the model: breadth 
defines which parts of the real-world system are to be included in the 
model and depth defines the level of detail. Having the scope reviewed and 
approved by the customer (as part of the Requirements Document) helps the 
customer understand what is being modeled.

8.3.6 System Perspective

This section details the relationships between the proposed model and other 
projects and/or models:

Relationship to External Systems and Subsystems•	
Relationship to Previous Projects•	
Relationship to Current Projects•	
Relationship to Successor Projects•	
User Type Characteristics (required skills and experience of the •	
expected Users of the model)
Operational Scenario (how it is expected the model will be used)•	

External systems may include sources and/or sinks of data.

8.3.7 g eneral r equirements and Constraints

General requirements and constraints are those that relate to the model 
as a whole. For example, use of COTS (Commercial Off The Shelf) soft-
ware,  standard hardware, predefined data formats, standard file formats 
(e.g., XML, bmp, JPEG), Identification Control (the use of model version 
 numbers), Change Control (the control of modifications to the model).

8.3.8 Specific r equirements

If the system to be modeled can be split into a number of subsystems then 
the specific requirements should be spread over a number of sections—one 
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per subsystem. The specific requirements detail the aspects of the real-world 
system that are to be included in the model. The detail of some specific 
requirements may be included as annexes. For example, details of particular 
algorithms to be used, data formats of external data sources.

8.3.9 Summary of the r equirements Phase

The requirements phase is intended to define and document what the model 
is required to do. It is not concerned with how the model does it or what type 
of model is to be used.

8.4 Design

This section considers the design phase of the software project life 
cycle. We discuss the purpose of the Design Document and outline its 
contents.

The purpose of the design phase is to document the design of the model. 
The design is “how” the requirements are to be met. The Design Document 
provides the following:

A discussion of/justification for selecting simulation as the method •	
of analysis
A clear statement of the structure and content of the model•	
Sufficient detail from which to implement the model•	
Sufficient detail from which to develop the Test Plan•	

The Design Document is not normally provided to the customer. The cus-
tomer is concerned with what the model does not how it does it.

8.4.1 Contents of the Design Document

The Design Document should include the following sections, which are 
described below:

Purpose of the Development•	
Stakeholders•	
System Perspective•	
Overview of the System to be Modeled•	
Method of Analysis•	
Simulation Structure•	
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Detailed Design•	
Inputs and Outputs•	

8.4.2 Purpose of the Development

This section contains a restatement of the purpose of the development 
as stated in the Requirements Document. The “Why?” question is still 
relevant during the design phase. Design elements that do not contrib-
ute to the “Why?” add no value to the model and should be omitted. To 
repeat, the “Why?” question drives the whole development and use of the 
model.

8.4.3 Stakeholders

This is essentially a repeat of the stakeholder list contained in the Requir-
ements Document. It is a useful reference to help identify source(s) of infor-
mation that can be used to resolve design problems.

8.4.4 System Perspective

This is also a repeat of the equivalent section of the Requirements Document, 
except that there may be design details required for interfaces with other 
systems and/or models.

8.4.5 Overview of the System to be Modeled

This is usually copied word-for-word from the Requirements Document, 
usually with the following comment:

The system overview is contained in Ref.…. It is repeated here for ease of refer-
ence but Ref.… remains the definitive statement.

8.4.6 Method of Analysis

This section contains a discussion of and a justification for the selection of 
simulation as the method of analysis. A discussion of the advantages and 
disadvantages of the various mathematical, statistical, and other opera-
tional research techniques that could be used is beyond the scope of this 
chapter, as is the methodology for comparing and contrasting them in 
selecting the method of analysis. But the principle is simple. Each available 
technique is compared with the requirements. The simplest technique that 
meets the requirements should be selected. For example, if a spreadsheet 
model meets the requirements then a spreadsheet model should be used 
(unless there is a simpler technique available). (The term “spreadsheet 
model” is used somewhat loosely. It is possible to implement complex 
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simulation models using a spreadsheet application—but the resulting 
model would still be a simulation model. Since the “simulation part” of 
the model is more complex than the “spreadsheet part,” we regard such a 
model as a simulation model rather than a spreadsheet model.) (Note that 
if a simple spreadsheet model meets the requirements but would not be 
suitable for answering the “Why?” question, then some requirements have 
been missed.)

In general, the following requirements are needed for a simulation model 
to be the most appropriate technique:

Interactions between different parts of the system—so that the sys-•	
tem must be considered as a whole
Dynamic effects—through feedback and/or time-dependent behav-•	
ior—so that the system behavior depends on its past history and not 
just on its current state
Randomness—typically requiring that system capacity be greater •	
than the average throughput so as to allow for peak demands

In practice, the method of analysis is provisionally chosen before the 
start of the project—during the project bid/estimation phase (which is 
outside the scope of this chapter). This is so that the required resources 
and timescales can be estimated in order for the project to be authorised. 
This section will usually confirm and justify the provisional choice of 
technique.

8.4.7 Simulation Structure

Determining the appropriate simulation structure is critical to the success of 
a simulation study. To date, it has not been possible to extend this methodol-
ogy to include a method for designing the optimum simulation structure. 
Every model is different. An approach that works well for one project and 
that yields a simple yet flexible structure will not work for another project. 
But it has been possible to derive an approach that provides the informa-
tion necessary to determine a good structure. This section describes that 
approach.

The approach relies on the principle that discrete-event simulations work 
by considering that the system changes from one state to another at discrete 
times and that we can consider the system to be unchanging between those 
times. It follows that we are interested in what happens when the system 
changes from one state to another and what causes those changes. We define 
simulation events to be those unconditional activities that occur at specific 
times—typically end activities. When the event occurs, the system changes 
state. For example, if a tank is being filled, there may be an event when the 
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tank becomes full. The system (or that part of it) would change state, say, 
from “being filled” to “full,” and we would expect the flow to be stopped. 
Simulation activities are the conditional activities that take place when cer-
tain conditions are met. Activities can only start at the time of a simulation 
event. This is because if the conditions have not been met at a given time 
then the system state is such that the activity cannot start. The conditions 
will remain unfulfilled until there is a change in the state of the system. 
Since the system state only changes when there is an event, the conditions 
can only be met when there is an event. The design of the simulation is the 
process of selecting a set of simulation entities that can generate all of the 
required simulation events.

The approach to designing the simulation structure is to list all of the 
required events—including virtual events that do not exist in the real world 
but are required by the model. Then, for each event, list all of the entities that 
are involved with that event. Activity Cycle Diagrams (ACD) are a useful 
tool in identifying events, entities, and activities. If every event were associ-
ated with one and only one entity then the structure is complete. Every entity 
is included in the simulation structure.

In practice, most events will involve multiple entities. Designing the sim-
ulation structure is a matter of selecting a subset of entities that cover all 
of the events while minimizing the number of events associated with more 
than one of the selected entities. The selection is done by trial and error, 
guided by skill and experience. (We did say that it has not been possible 
to find a method for designing the optimum simulation structure!) The 
process can sometimes be simplified by identifying subsets of the system 
where a single entity can be selected and then removing that subset from 
consideration.

This approach has the advantage of providing a systematic approach to 
the problem of designing the simulation structure. It does not necessarily 
provide a simple solution to the problem but it does ensure that nothing is 
overlooked.

8.4.8 Detailed Design

The detailed design consists of listing all of the activities and events. For 
each activity, list the preconditions that must be met and the processing that 
takes place when those conditions are met. For each event, list the processing 
that takes place when the event occurs.

8.4.9 inputs and Outputs

This section details the required inputs and outputs. In most simulations, 
the inputs consist of the attributes of the entities and the parameters of the 
activities. The outputs usually consist of utilizations, queuing times, etc.
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8.4.10 Summary of the Design Phase

The design phase consists of selecting (or confirming) the method of analysis 
and determining the simulation structure. There are many approaches to 
designing the simulation structure but an approach based on consideration 
of the simulation events has been found effective. Once the simulation events 
and entities have been selected, the detailed design is produced by consider-
ing the conditions for activities to start and the processing involved at the 
start and end of those activities.

8.5 Implementation

Implementation is the process of turning the design into a working model. 
It depends on the simulation package in use and is outside the scope of this 
chapter.

8.6 Verification 

Verification is the process of testing that the model as implemented con-
forms to the design. Model verification can be undertaken by using simple 
data sets for which the expected results can be easily calculated. These data 
sets are likely to exercise limited areas of the model. Data sets should be 
selected that, between them, cover all of the functionality of the model. The 
results of runs using these data sets should be compared with the expected 
results.

Verification of the complete functionality of the model can be performed 
by combining selected simple data sets and checking that the results are 
consistent with the results of the component runs. (Note that interactions 
between model elements would typically increase waiting times and reduce 
the combined throughputs.) The complexity of the test data can be gradually 
increased until the data sets are similar to those that will be used for the 
project.

The final verification tests are soak tests. A series of tests with inputs much 
higher than those that would be used in a study and a series of very long 
runs. Both series of tests are intended to ensure that the model behaves prop-
erly under extreme conditions.

The results of verification testing should be documented in the Verification 
and Validation Log.
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8.7 Validation

Validation tests that the model is fit for purpose:

Does the model meet the requirements in the Requirements •	
Document?
Can the model be used for the intended study, i.e., does it answer the •	
“Why?” question?

Validation testing should use real data where this is available.
Validation with real-world data is not always possible since real-world data 

may not exist or may not available for many of the model functions. In which 
case, the model can be validated by using Subject Matter Experts (SME) to 
assess the results of the model for a range of scenarios.

Validation is often a mix of real data and SME judgment.
The results of validation testing should be documented in the Verification 

and Validation Log.

8.8 Example of the Methodology

As an example of the use of the methodology, consider a project to design 
a Message Handling Centre. Messages are received by the Centre, are pro-
cessed, and in a small proportion of cases, result in messages being sent by 
the Centre to external systems and/or organizations for further action. There 
are a number of different message types with each type requiring different 
processing. The design project is responsible for the complete design of the 
Message Handling Centre: 

The size and physical layout of the building•	
The procedures for handling the messages, including which parts •	
of the processing can be handled by automatic systems and which 
require manual input
The numbers, skills and qualifications, shift patterns, etc. of the •	
Centre staff.

Due to the complexity of the message handling, it has been decided that the 
design project will require analytical support and that a simulation model is 
the most cost-effective way to provide that support.
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8.8.1 r equirements

Following a Requirements Analysis, the following key requirements have 
been identified:

To clarify the Message Handling Centre requirements and inform •	
the design of the Centre
To facilitate discussion of the proposed design, both within the •	
design team and with the customer and external stakeholders
To de-risk the design process•	
To support the design of the business processes within the Centre•	
To help plan resource management for the future in order to deal •	
with peaks and troughs in demand
To investigate the impact of resource levels on system performance•	

8.8.2 Simulation Structure

The methodology for designing the simulation structure starts by listing all 
of the simulation events and simulation entities within the scope of the sys-
tem to be modeled. In the case of the Message Handling Centre, the simula-
tion events are these:

Message generation (of messages input to the Centre)•	
Manual processing of messages by Centre staff•	
Automatic processing of messages by Centre systems•	
Processing of messages by systems external to the Centre•	
Processing of time-expired messages•	
Shift changes•	
Dynamic reallocation of staff between teams to meet changes in •	
workload for each team

There are several candidates for the time-dependent simulation entities 
(the entities that control the simulation timing):

Messages•	
Manual processes•	
Automatic processes•	
Staff•	
Centre systems•	
External systems•	
Workstations•	
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But messages are the only one of the above entities that are involved in 
all of the main activities. Also, the message dwell time (how long a mes-
sage remains in the Centre) is one of the main outputs required. Thus the 
main simulation entity should be the message. (This leaves shift changes and 
dynamic reallocation to be handled separately.)

8.8.3 Simulation Activities

The simulation activities in which the simulation entities (the messages) take 
part are the processing tasks of the Message Handling Centre. How should 
these activities be linked to form the activity cycle(s) through which the sim-
ulation entities will move? The obvious way in which to link the activities 
is in the order in which they appear in the relevant process. We would then 
have an activity cycle for each process and the structure of the model would 
reflect the structure of the Centre processes. While this approach has the 
advantage of mirroring the Centre process structure, it does have a number 
of disadvantages:

Messages in the Centre will queue for a team or person, or for a •	
Centre or external system. Messages in the above simulation process 
structure will queue for a process task. Although tasks that use a 
shared resource can be linked by requiring a common resource, hav-
ing multiple queues for each resource type complicates the manage-
ment of the queue discipline.
Changes to a process or the addition of another process would •	
require changes to the model. (Such changes are likely to be required 
and would be better handled as data changes, if possible.)
Dynamic reallocation of staff according to team workload depends •	
on calculating the current demand on each team. With the above 
model structure, that demand would be spread over a number of 
queues and would be time consuming to calculate.
Although the screen layout of the model would show the structure •	
of the processes, it would give no indication of the physical layout of 
the Centre.

None of the above disadvantages are insurmountable. It is to be expected, 
however, that very high throughputs of messages will be required during 
runs of the model. It is therefore necessary that the model design be as effi-
cient in runtime as possible. So, for example, it is likely that a design that 
allows a simple method of calculating team demand would be preferable to 
one that does not.

An alternative simulation structure would be one that focuses on the phys-
ical layout of the Centre. The activity cycles would be based on the activities 
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performed by Centre staff and Centre and external systems. This would 
answer the above disadvantages as follows:

Messages in the simulation could queue for a team or person, or for a •	
Centre or external system. Queue discipline would be implemented 
in single queues for each resource type.
Since the process structures are not modeled by the structure of •	
the model, they would need to be modeled in data. Changes to a 
process or the addition of another process would be done by data 
changes.
The current demand on each team could be calculated from the •	
demand on the team and its members—indicated by the work 
queueing for the team and its members.
The screen layout of the model could show the physical layout of the •	
Centre.
This alternative simulation structure has the disadvantage that the •	
process structure needs to be defined in data and that it is not obvi-
ous where a message must be routed once it has completed a task. 
The data for that task/process must be referenced to determine to 
where the message should be routed. Either every activity must be 
followed by a router that routes the message to the next task or the 
model requires a central routing function that can handle every 
message and every process. The latter approach is more complex, 
but the former leads to duplication of code and possible inconsisten-
cies in the model.

8.8.4 Simulation Design

The final simulation design focuses on the processing of the messages by 
the Centre staff and systems. The process maps for the processing tasks that 
are applied to each message type are defined in data. The process maps can 
therefore be modified and new message types added to the model without 
making changes to the model itself. This gives a highly flexible model but 
one that is difficult to implement and test. The final check on the suitability 
of the design is to review the key requirements and assess how well the 
model design meets those requirements.

To clarify the Message Handling Centre requirements and inform •	
the design of the Centre—any well-designed model should meet this 
requirement.

To facilitate discussion of the proposed design, both within the •	
design team and with the customer and external stakeholders—the 
physical layout of the Centre is mirrored in the screen layout of the model 
and the process maps of the message processing can be easily changed.
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To de-risk the design process—•	 any well-designed model should meet 
this requirement.
To support the design of the business processes within the Centre—•	
designing the business processes is simplified by being able to experiment 
with the processes without making changes to the model.

To help plan resource management for the future in order to deal •	
with peaks and troughs in demand—shift patterns and dynamic real-
location of staff are two ways of dealing with peaks and troughs in demand. 
Since the design has single work queues for each resource type, model imple-
mentation and testing will be simpler and runtimes will be shorter than if 
the model had to manage multiple queues for each resource type.

To investigate the impact of resource levels on system performance•	 —
any well-designed model should meet this requirement.

The resulting design is by no means the only design that could have been 
produced, and if the key requirements had been different, a different design 
may have been developed. Just as the structure of the model should mir-
ror the structure of the real-world system, it should also mirror the study 
requirements.

8.9 Summary

In this chapter we have shown how software engineering principles can be 
applied to conceptual modeling for discrete-event simulation models. Those 
principles have been modified to reflect the qualitative differences between 
simulation models and other types of software applications.

The methodology starts with the requirements phase, which addresses 
the “Why?” question. Why do we need a model and what should it do? 
The “Why?” question applies to every phase of the model development. The 
output from the requirements phase is the Requirements Document. The 
Requirements Document has two uses: as an input to the design phase and 
as a clear statement of what the model is intended to do that can be reviewed 
and approved by the customer.

The requirements phase is followed by the design phase. The output from 
the design phase is the Design Document, which documents the design, 
including why it was decided to use a simulation model and a discussion of 
the design of the simulation structure. Design is followed by implementa-
tion, and then by verification and validation.

The methodology described in this chapter is not the only conceptual 
modeling methodology, nor is it necessarily the best. But it has been used in 
the development of many simulation models in a commercial environment 
and has proven useful.
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9
Making Sure You Tackle the Right 
Problem: Linking Hard and Soft 
Methods in Simulation Practice

Michael Pidd

9.1 Introduction

This chapter argues that simulation analysts should carefully consider the 
context for their technical work before starting to build a simulation model. 
It is common for analysts to complain that, though their work was excellent, 
it was never used or implemented because of what they refer to, somewhat 
dismissively, as “organizational politics.” Rather than dismiss such politics, 
which some people regard as part of any organization, it is better to use 
methods that help an analyst to understand how the power and interests of 
different stakeholders can affect the outcome of their work. That is, analysts 
need to develop skills that enable them to accommodate to organizational 
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realities rather than to bemoan their existence. Not to do so is to greatly 
increase the risk of failure, however excellent the technical methods used in 
developing a simulation model.

Most simulation text books devote their space to three technical areas 
that readers should master if they are to become proficient as simulation 
practitioners. 

 1. Modeling: extracting the relevant parts of a system of interest and 
representing them, appropriately, within a simulation model. This is 
a skill that develops though practice and requires the analyst to take 
a systems viewpoint so as to tease out system components that have 
the most effect on performance. Since this is not a skill that is eas-
ily expressed in technical terms, this is one of the weakest parts in 
many books, exceptions being Robinson (1994, 2004) and Pidd (2003, 
2009).

 2. Statistical methods: most discrete-event simulations include sto-
chastic behavior that is represented by sampling from appropriate 
probability distributions. Thus the modeler needs to know which 
distributions are appropriate, how they should be represented in the 
model, and how to analyze the resulting behavior of the simulation. 
The approaches needed rest on standard statistical theory and are 
relatively easy to write down in unambiguous terms, and thus these 
ideas are well described in books such as Law and Law (2006) and 
Lewis and Orav (1989).

 3. Computing: though it is possible to build a simple simulation model 
with little or no computing knowledge or experience, it soon becomes 
apparent that it helps to know much more than which button to 
press. Knowing how the simulation program or package works, is a 
great help in developing simulations that are accurate and run fast 
enough for proper use. Hence there are books that devote much space 
to showing readers how to develop simulation programs using par-
ticular software; examples include Kelton et al. (2004) and Harrell 
et al. (2004).

The programs for simulation events such as the annual Winter Simulation 
Conference (http://www.wintersim.org/) also focus on the same top-
ics, though also include reports of work in particular application domains 
such as manufacturing, health care, aerospace, criminal justice, or another 
domain. 

When starting to work in any application domain, a simulation analyst 
needs to take her understanding of modeling, statistics and computing 
and bring them to bear in the domain. When starting work in a domain 
that is wholly new to them, all simulation analysts experience some 
confusion in which they are unsure what level of detail is required and 
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what should be included or excluded from the model and the  modeling. 
Obviously, this becomes easier with experience in the application domain, 
as the analyst learns which features are important. However, there is also 
a danger that an analyst with long experience in an application domain 
starts to take things for granted that, later, turn out to be important. 
Hence it is important that analysts carefully consider what elements 
should be included in their study—no matter how familiar they are with 
the domain.

This chapter presents, briefly, some of the main ideas in problem structur-
ing and discusses how they can be useful in conceptual modeling. It intro-
duces an informal approach to problem structuring and lists some of the 
formal approaches advocated in the literature and then continues with a 
more detailed exposition of soft systems methodology (SSM). Finally, it uses 
a real-life simulation study conducted for a UK police force to show how 
aspects of problem structuring methods (PSMs) can be useful in practice.

9.2 Problem Structuring

This suggests that there is a need for approaches to help someone new to a 
problem domain to get to grips with its important features and a similar need 
for approaches that help prevent the experienced from becoming overconfi-
dent. Clearly, there is no silver bullet that will guarantee success, but there 
are approaches that are intended to help an analyst tease out the important 
features of a problem situation. There are approaches that are intended to 
help analysts understand the main features of problems in which they are 
asked to work. These appeared in the Operational Research/Management 
Science (OR/MS) community in the UK and Europe and are sometimes 
known as “soft” OR or as PSMs (Rosenhead and Mingers 2001). The term 
soft seems to have become popular following the development of SSM by 
Peter Checkland and his colleagues at Lancaster University, an approach 
described later in this chapter. The use of the adjective soft is unfortunate, 
since it may carry the idea of trivial or simple and this is far from the case, 
and this is one reason why the many people prefer to write about PSMs 
rather than soft OR.

The term problem structuring carries two different meanings, which are 
summarized in Figure 9.1. As originally used, “problem structuring” referred 
the work done in problem solving to structure the issues before any detailed 
analysis is conducted. As an example of this, Pidd and Woolley (1980) report 
on the problem structuring approaches used by OR practitioners in part of 
the UK about 30 years ago. The idea of this type of problem structuring is 
to develop understanding, in particular, to understand the context for the 
simulation project, such as the ways in which different stakeholders “see” 
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the world and what they are hoping to achieve from the project. It continues 
through the project right up to implementation, supposing that this occurs, 
but is the main focus of the early stages of a typical simulation project. Pidd 
and Woolley (1980) report that though OR analysts were concerned to prop-
erly structure the problems they were tackling, there was no real evidence of 
them using formal methods to help with this.

The second use of the term relates to tackling “wicked problems” (Rittel 
and Webber 1973). These are characterized by clashing objectives, a short-
age of data, and multiple stakeholders, who may have very different opin-
ions from other stakeholders on what is desirable. Such wicked problems 
are, in essence, unsolvable, in the sense complete resolution or improve-
ment. However, it is usually still possible to make progress in their resolu-
tion by structuring the interrelated issues in such a way that stakeholders 
can hold an intelligent debate about what might be done. The formal PSMs 
described in Rosenhead and Mingers (2001) are techniques and approaches 
that can be used to structure such debate and discussion. This type of prob-
lem structuring is a deliberate contrast with the idea of problem solving, 
since there is no assumption that problems can be solved in any permanent 
sense, rather the aim is enable stakeholders to make progress when faced 
with wicked problems. This second use of the term problem structuring is 
now more common than the first and can be seen as an attempt to intro-
duce procedural rationality Simon (1972, 1976), into tackling wicked prob-
lems. That is, this form of problem structuring provides a systematic way 
to collect information, to debate options, and to find some acceptable way 
forward.

9.2.1 Complementarity

In recent years, it has become clear that the same methods developed for 
structuring wicked problems can also serve as a preliminary to formal 
modeling; that is, they can help with the first type of problem structuring. It 
might be argued that this amounts to overkill if the simulation project is very 
simple and straightforward. However, it is not at all unusual for what seems 

Fig ur e 9.1
Two views of problem structuring.
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like a simple simulation project to become more and more complex as work 
proceeds. This can happen for many reasons as stakeholders become aware 
that work is underway and, not unreasonably, wish to have their voice heard. 
Hence, the argument of this chapter is that conducting formal problem struc-
turing is valuable in almost all simulation projects.

The subject of this book is conceptual modeling, which is the process 
of understanding what might be included in a model and representing 
this in a way that is relatively independent of the simulation software 
to be used. Some writers (e.g., Robinson 2004, 2008) insist that the con-
ceptual model must always be independent of the software being used, 
but that seems too stringent a requirement given the inclusive nature of 
much simulation software. Pidd (2009) defines a model as “an external 
and explicit representation of part of reality as seen by the people who 
wish to use that model to understand, to change, to manage, and to con-
trol that part of reality.” Since it is only part of reality, a model will always 
be a simplification; some things will be included, others will be excluded. 
Before deciding what should be in and what should be out, it makes sense 
to consider the context of the proposed work and this is the role of PSMs 
in simulation.

When problem structuring approaches are used in combination with 
analytical approaches such as computer simulation, it is sensible to regard 
the two approaches as complementary (Pidd 2004). It is, though, impor-
tant to realize that such complementary use is based on the mixing of 
paradigms and methodologies (Mingers and Gill 1997) and that care is 
needed when doing so. Detailed discussions of this complementary use 
can be found in Pidd (2004), which reports on a research network involv-
ing both academics and practitioners in the UK established to consider 
the difficulties and challenges. Kotiadis and Mingers (2006) discuss some 
of the challenges faced when attempting to link PSMs with “hard” OR, 
specifically with discrete-event simulation modeling in health care and 
is optimistic about such complementarity. Pidd (2009) compares and con-
trasts formal PSMs with more classical management science techniques, 
including simulation.

From this point on the term problem structuring applies to the use of sys-
tematic approaches to help diagnose a problem and understand the main 
issues as a prelude to detailed simulation modeling. The aim is to find 
ways to implement John Dewey’s maxim (quoted in Lubart 1994): “A prob-
lem well put is half solved.” It seems as if he had in mind that a poorly 
posed problem will be very hard, if not impossible, to solve—as expressed 
in the title of this chapter: making sure that you tackle the right prob-
lem. There can, of course, be no guarantee of this, but problem structuring 
approaches can help reduce the risk of working on the wrong problem. 
As with simulation modeling itself, users of PSMs grow more expert in 
their use as their experience develops. There is, though, no silver bullet, 
no magic formula that will guarantee the correct diagnosis of a problem 
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in such a way that the right simulation model is built and that this is used 
appropriately.

9.2.2 informal Problem Structuring: Critical examination

Since many simulation practitioners are engineers, it makes sense to start 
by discussing an approach known as critical examination that has been 
used by engineers for many years. Though engineers are rarely regarded as 
poets, critical examination is based on six questions that are neatly summa-
rized in a verse by Rudyard Kipling from the Just So Stories (“The Elephant’s 
Child”):

I keep six honest working men
(They taught me all I knew);
Their names are What and Why and When
And How and Where and Who.

These make a very good starting point for considering the main aspects of a 
problem for which a simulation approach is being considered.

The first question in the verse revolves around what. Of course, there are 
many different questions that could be asked, which begin with what. The 
most obvious and one for which there is rarely a straightforward answer 
without working through all six questions is, “What’s going on?” or “What’s 
the problem we need to work on here?” It is perhaps better to ask, “What are 
the main issues that concern people?” In a manufacturing simulation, these 
might include some or all of cost reduction, uniform high quality, integrat-
ing work centers, or reducing stocks. In a simulation of a call center, they 
might include some or all of meeting performance targets for answering 
calls, establishing equipment needs, designing a call routing system, and 
determining a shift pattern. Note that these issues are rarely independent 
and may be in conflict with one another. At the early stage of a simulation 
project, it is important to simply identify these issues and to keep them in 
mind as part of the development of a conceptual model.

The second question starts with why. Perhaps the most common variants 
on this are to ask, “Why are these issues important?” “Why do particular 
people think these are important?” and “Why is this important now?” Of 
course, the latter two questions spill over into the who and when questions. 
It is not unusual for problems to be known, but not tackled. Sometimes there 
is good reason for this—there are just more important things to be done, 
or people have found workarounds that have been good enough. It is very 
common for answers to the why questions to become more subtle and com-
plex as the work proceeds. Hence it is best to regard problem structuring as 
something that goes on throughout a project. 

Experienced modelers know that they sometimes only have a real appre-
ciation of the problem they are tackling when the work is complete. It was 
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this realization that led Pidd and Woolley (1980) to conclude that this form of 
problem structuring is characterized by four features:

 1. It is inclusive: the questioning and deliberation are not just concerned 
with the technical aspects of the work, but also considers how the 
model might be put to work and how stakeholders might be per-
suaded to act on any recommendations.

 2. It is continuous: the questioning and deliberation are iterative or 
cyclic and continue throughout the project. In the terms introduced 
by Kolb (1983), it is a learning cycle during which participants learn 
the aspects that need to be included in the model and its use.

 3. It has some hierarchical features: one problem tends to spawn another 
and decisions must be made on how detailed or specific the model is 
intended to be.

 4. It is informal: which explains the title of this section. That is, people 
get on with it, cutting corners where appropriate and sometimes 
regretting this later.

With this in mind, the third informal question asks when and concerns 
the time dimension. Typical examples might be: “Is this a once-off problem 
or one that recurs?” or “Has this been a problem for some time but only 
recently become important enough for action?” or “When will the model be 
needed?” or “When will the changes to the systems need to be implemented 
and properly working?” The first two relate to the earlier why questions 
and the latter two give some idea of the resources that will be needed to 
do the work and of the level of detail that can be achieved in the model. If 
the model needs to be built and tested in a couple of weeks, it is unlikely to 
include much detail.

The fourth informal question asks how. The first common example asks: 
“How am I going to model this?” referring to the technical approach that 
may be needed. The second common example asks: “How did all of this start 
to emerge?” Clearly this and the other five “honest working men” are close 
relatives or friends, and in this form it relates closely to the who and when 
questions. But it also relates to the what question in facing up to how things 
are done at the moment or how people might envisage things to operate in 
the future. This depends both on the analyst’s reflection and deliberation 
and also on the opinions of the people who are interviewed at this stage of 
the work.

Fifth, we can ask the where questions. Often these are less important when 
taken at face value, for the location of the system of interest may be obvious. 
However, even this should not be taken for granted. Location can be very 
important now that instantaneous electronic communication around the 
world is available at low cost. Tasks that once had to be located in one par-
ticular place may now be located elsewhere in the world. Examples include 
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the transfer of medical images and resulting diagnosis on a different con-
tinent from the place that the patient is located, the location of telephone 
help-desks, the processing of routine documents and the 24/7 development 
of computer software. The why question might also become “Where is this 
problem occurring?” and this suggests the need for careful understanding 
of the system of interest.

Finally, and often the most important, are the who questions. Since most 
organizations are inherently political, the people, their motivations, and their 
actions become very important. Put simply, in many situations, some people 
have much more power to get things done than others. Equally, some people 
have much more power to stop things being done and this may be just as 
important. In a privately owned business it may be obvious that the owner 
calls the shots. In a public body there are often many stakeholders whose 
views must be considered and their views may conflict. Hence, irritating 
though it can be to people of a technical bent, a careful identification of the 
main players can be crucial in getting things done—even for something as 
basic as data acquisition.

As the preceding argument demonstrates, informal problem structur-
ing is not difficult to understand. This presentation of critical examination 
should not, though, be used to as a reason wander aimlessly around asking 
aggressive questions of other people. The idea is that the analyst keeps these 
questions in her head and, in interacting with other people and using previ-
ous experience, teases out answers that will inform the modeling work and 
its implementation. There are times, however, when something more than 
this informal approach is needed, when a more formalized methodology is 
needed to manage a complex situation.

9.3 Formal Problem Structuring Methods

It is impossible, in the space available, to give more than a flavor of com-
monly used, formal PSMs. A good survey is found in Rosenhead and 
Mingers (2001) and detailed accounts can be found in works produced by 
the developers and advocates of the various approaches. The Journal of the 
Operational Research Society (Shaw, Franco, and Westcombe 2007) produced a 
special issue devoted to recent developments and it seems likely that  others 
will appear in the future. In this chapter, the aim is to present a very brief 
survey and then illustrate the ideas by focusing on one approach, SSM, 
in more detail. Other problem structuring approaches have been used in 
a complementary fashion with discrete simulation modeling; for example, 
see Sachdeva, Williams, and Quigley (2007). Likewise, PSMs have been used 
with system dynamics models and Howick (2003) is an example of a paper 
linking this form of simulation with cognitive mapping, another commonly 
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used problem structuring approach. For a discussion of the use of PSMs in 
simulating airline operations that involved multiple stakeholders, see Den 
Hengst, de Vreede, and Maghnouji (2007).

It is likely that formal PSMs are of most use in situations where strategic 
issues loom large, rather than in tackling low-level, operational problems. 
The various formal methods assume that stakeholders may legitimately dis-
agree with one another, that they may behave politically and that there may 
be disagreement about ends (why and what should we be doing?) as well as 
about means (how can we increase throughput by 15%?). With this in mind, 
Rosenhead (1989, p. 12, Table 2) suggests that the formal methods share six 
distinctive characteristics:

 1. Non-optimizing: seeks alternative solutions that are acceptable on 
separate dimensions without trade-offs

 2. Reduced data demands: achieved by greater integration of hard and 
soft data with social judgments

 3. Simplicity and transparency: aimed at clarifying the terms of 
conflict

 4. Conceptualizes people as active subjects
 5. Facilitates planning from the bottom-up
 6. Accepts uncertainty and aims to keep options open for later 

resolution

The idea of formal PSMs seems to have arisen in the UK OR community 
in the 1970s and the methods have developed since then and are routinely 
taught on educational programs in Europe. Curiously, their penetration has 
been much lower in the US and some in the OR/MS community view them 
with great suspicion. Other communities, for example those involved in soft-
ware engineering, have also developed approaches such as Dialog Mapping 
(Conklin 2002) and Design Rationale (Lee and Kai 1991), with many of the 
same characteristics. Rosenhead and Mingers (2001) discuss the approaches 
most commonly used in OR/MS and matches a descriptive chapter on each 
approach with another discussing an implementation. Their list of methods 
is as follows:

SODA (cognitive mapping)•	
Soft systems methodology•	
The strategic choice approach•	
Robustness analysis•	
Drama theory and confrontation analysis •	
Related methods: viable systems modeling, system dynamics, and •	
decision analysis
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It is impossible to do justice to all these approaches in a single chapter that 
relates their use to conceptual modeling. Hence, here we focus solely on 
SSM, which Mingers and Taylor (1992) reports as one of the most commonly 
used PSMs.

9.4 Soft Systems Methodology

Despite its unfortunate title, SSM is widely used. An early postal survey 
(Mingers and Taylor 1992) investigated the use of SSM and reports that the 
majority of SSM users did so with a view to easing a problem situation or to 
develop understanding. Users also claimed that a main benefit of SSM was 
that it provided a strong structure within which they could achieve these 
aims. These findings seem to support the view that SSM provides a formal-
ized approach to gaining understanding within an organization, paying due 
regard to cultural issues.

Checkland (1981, 1999) describes the development of SSM and its main fea-
tures. Checkland and Scholes (1999) provide a more practical view of the 
ideas, Wilson (1990) provides a systematic discussion of how the ideas might 
be operationalized, which is an issue also faced in Checkland and Poulter 
(2006). The description of SSM presented here is based on that in Pidd (2003, 
chapter 5). Paul and Lehany (1996) discusses some general issues in link-
ing SSM to discrete simulation modeling, Baldwin, Eldabi, and Paul (2004) 
present a general methodology based on SSM for understanding stakehold-
ers in health-care simulations and Lehany and Paul (1996) discuss a specific 
health-care application in which SSM and simulation are used in a comple-
mentary fashion. As mentioned earlier, Kotiadis and Mingers (2006) discuss 
the issues to be faced when linking PSMs to discrete-event simulation and 
Kotiadis (2007) specifically suggests ways of achieving a symbiosis between 
SSM and simulation.

9.4.1 The Overall Approach of SSM

The original book on SSM (Checkland 1991) presents a nine-step approach to 
its use. It seems that Checkland rather regretted this mechanistic presenta-
tion, for a rather more fluid description is provided in later works. Figure 9.2, 
which reflects Checkland’s preferred depiction of SSM, shows the approach 
as a learning cycle with a number of features.

SSM aims to help people to understand and, possibly, to design human 
activity systems. In exploring what this means it is important to realize that 
the idea of a system is employed in SSM somewhat differently from its every-
day use. Rather than assuming that systems, as such, exist, they are taken 
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as useful conceptualizations or convenient fictions. In these terms, human 
activity systems have the following characteristics:

Boundaries: •	 Some things are inside the system, others are not and 
constitute the environment of the system. Note, though that the 
boundary may not be obvious. For example, in a call center, is the 
location from which someone calls to be part of the model? 
Components: •	 There is more than a single element within the bound-
ary. A boundary that contains nothing is not a system and nor is a 
boundary that contains a single element.
Internal organization: •	 The elements are organized in some way or 
other and are not just chaotic aggregations.
Behavior: •	 The system is recognized as such because it displays 
 behavior that stems from the interaction of its components; that is, 
this behavior is not just from those individual components.
Openness: •	 The system boundary is permeable in both directions and 
there is communication and interaction across the boundary. The 
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An overview of soft systems methodology. (Adapted from Checkland, P.B. and  Holwell, S., 
Systems Modelling: Theory and Practice, John Wiley & Sons Ltd., Chichester, UK, 2004. Used with 
permission.)
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cross-boundary exchanges constitute the external relations of the 
system.
Human activity: •	 What people do, and how they do it, are prime con-
cerns of SSM. It follows from this that human activity systems are 
dynamic as a result of human action.
Human intent:•	  People are not just machines that do things. What they 
do has meaning and significance for the individuals and groups 
concerned. Why people do things are often at least as important as 
what they do and how they do it.
Limited life: •	 Human activity systems are not eternal, and their life 
may be quite short.
Self-regulation•	 —A process of regulation, control, or governance, 
which maintains it through time, is a characteristic of an open sys-
tem. These systems may be in equilibrium, but this stability is not 
the same as stasis.

This view of a human activity system, for which Checkland prefers the 
term holon, is somewhat wider than the classic engineering view of a sys-
tem as something designed to achieve a purpose in that it incorporates 
the idea of human activity and human intent, recognizing that these are 
crucial to success. The stacked rectangles in Figure 9.2, labeled as “mod-
els of selected concepts of purposeful activity from the perspective of 
declared worldviews,” do not imply that such models, or human activity 
systems, actually exist or even could exist. These are conceptualizations 
that serve to illustrate how things might ideally exist, and the idea is to 
understand what action might be taken, by those involved, to improve 
things.

The large cloud represents a perceived, real-world problem situation. In 
many SSM studies, this is the starting point of the work and this is likely 
to be the case if the SSM is used as a prelude to detailed modeling, pos-
sibly using simulation. The term real-world problem situation is carefully 
chosen. The word perceived is used because a study always begins with 
a recognition that something needs to be done; that is, some situation is 
unsatisfactory now or a system needs to be designed or reconfigured for 
the future. Since there are often different stakeholders (including the client 
and analyst), the perceptions of those people matter and different stake-
holders may perceive things rather differently. However, SSM is not pri-
marily intended for philosophical use, but for the world of action and in 
which something must be done. Hence, this is a real-world problem that 
needs to be tackled.

In this chapter, the main focus is the use of PSMs in conceptual modeling. 
That is, Type I problem structuring (Figure 9.1), which is a prelude to more 
formal mathematical or computer representations of a system of interest. 
Hence, it focuses on the role SSM in understanding how stakeholders view 
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the issues of concern in a simulation study as part of conceptual modeling. 
Therefore, there is no attempt to complete the learning loop of Figure 9.2 
within the chapter, for which the reader is referred to the numerous detailed 
accounts of SSM, including those listed at the end of this chapter.

9.4.2 u nderstanding a Perceived, r eal-World Problem Situation

The main focus of this chapter is the use of SSM to understand a real-world 
problem so as to work toward improvement. The word problem is itself some-
what problematic (Pidd 2009, chapter 3) and so Checkland instead refers to a 
problem situation; that is, the set of interacting policies, people, equipment, 
actions, and intent that may or may not be causing difficulties now or in the 
future. One of the aims of SSM is to tease out these aspects so as to under-
stand which are most important in seeking improvement. This is the finding 
out stage of SSM and seems transferable to most application areas and could 
serve as a useful starting point for many simulation studies to reduce the 
risk of fruitless endeavor later. In this finding out stage, above the cloud in 
Figure 9.2 is the need for social and political analysis to inform the devel-
oping understanding of this problem situation. In essence this is a formal-
ization of the six questions involved in the critical examination of informal 
problem structuring.

The social analysis can be considered in two parts; firstly, a conscious 
attempt to identify the people occupying various roles in an typical mod-
eling project, as follows. First, there is the “would-be problem solver”: the 
person who has decided, been told or has requested to investigate the 
 situation—most likely, you, the analyst. Second, the “client”: the person for 
whom the investigation is being conducted. Finally, the “problem owners”: 
which would include the various stakeholders with a range of interests. Note 
that any or all of these roles may overlap—for example, someone may be 
using SSM to help support their own work. The second part of SSM social 
analysis is to investigate the problem situation as a social system. The idea 
is to build on the knowledge of the significant roles that people occupy, to 
investigate the norms and values that are expressed. Roles are taken to be 
the social positions people occupy, which might be institutional (teacher) or 
behavioral (clown). Norms are the expected, or normal, behavior in this con-
text. Values are the local standards used to judge people’s norms. The idea 
of this analysis is that the analyst should try to understand how people play 
out their roles.

The political analysis requires the examination of the problem situation 
as a political system, in an attempt to understand how different interests 
reach some accommodation. This is an explicit recognition that power play 
occurs in organizations and needs to be accounted for. Needless to say, any 
analysis of power and its use needs to be undertaken carefully and, possibly, 
covertly. Even when sitting in a bar, there is little point asking people what 
their power ploys are!
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9.4.3 Power-interest g rids

One widely recommended way to consider power is to use of a  power- interest 
grid, which is a 2x2 classification on dimensions of power and interest. In 
simple terms, power is the ability to get things done or to stop things hap-
pening and this is very different from only having an interest in what is 
happening. Checkland does not discuss their use, but they seem a useful 
addition to the official accounts of SSM. Various formulations of power-
interest grid can be found on the Internet and Eden and Ackerman (1998), 
discussing problem structuring using cognitive mapping, uses a sporting 
analogy and labels the quadrants as players, subjects, context setters and 
crowd, as shown in Figure 9.3.

The players have the most power to affect the outcome and, one hopes, 
the most interest in doing so. Thus, stakeholders with high power and high 
interest need to be managed very closely and examples might include senior 
managers in whose domain the work is being conducted. On the other 
hand, the crowd has both limited interest and limited power to affect the 
outcome: examples might include the owner of the land on which a manu-
facturing plant is based. The crowd, unlike a passionate football crowd, only 
gets excited when actions are taken that might threaten them. If the team is 
owned by a remote group interested only in the financial results, it may be 
reasonable to regard them as context setters having much power but little 
actual interest. As shown in Figure 9.3, the context setters should be kept 
informed of developments so as to ensure that they are on-side. Finally, the 
subjects have a great interest in what is happening but little direct power 
and, at the very least, their views must be noted since they could walk away 
and this might, eventually, lead to failure. From an ethical standpoint, too, 
it is important in some situations that the interests of subjects be protected 
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during and after the project. It should be clear that the players are crucial, 
since they have high power and interest. However other stakeholders must 
not be ignored and a stakeholder analysis is always profitable and need not 
take long.

Following investigation of the problem situation, Figure 9.2 shows that 
an SSM study requires the construction of models of purposeful activity 
from the declared worldviews. Two aspects of this merit discussion here. 
First, it is important to realize what is meant by a model in SSM, since this 
is not the same as a simulation model. A model in SSM is something that 
captures the essential activity needed in an idealized implementation of 
the system of interest. These are usually developed from root definitions, 
which is a concept discussed later in this chapter. Second, note the refer-
ence to declared worldviews. The aim of the social and political analysis is 
to understand the different worldviews of the people and groups involved 
in the problem situation. SSM takes for granted that there may be different 
worldviews—that is, people may legitimately disagree about the ends and 
means of a study. The different viewpoints are teased out and represented 
in root definitions.

9.4.4 r oot Definitions

The idea of a root definition is to provide a minimal definition of a system, 
viewed partly in input:output terms, to enable discussion between stake-
holders about what is required. The idea is that the root definition is in some 
sense neutral, in that a particular structure is required that separates the 
definition and its supporting worldview from the stakeholder(s) to whom it 
belongs.

A root definition consists of six elements as follows (summarized in Pidd 
2010):

Customers:•	  These are the immediate beneficiaries or victims of what 
the system does. A customer can be an individual, several people, 
a group or groups. This is very close to the total quality manage-
ment (TQM) notion that the customer is the next person to receive 
the work in progress. The customers help define the main external 
relations of the system being conceptualized.
Actors:•	  In any human activity system there are people who carry out 
one or more of the activities in the system, these are the actors. They 
form part of the internal relations of the system. There may be sev-
eral actors or several groups and their relationships also form part of 
the internal relations of the system.
Transformation process:•	  This is the core of the human activity system 
in which some definite input is converted into some output and then 
passed on to the customers. The actors take part in this transforma-
tion process and, ideally, a root definition should focus on a single 
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transformation. The transformation process is an activity and its 
description therefore requires the use of verbs.
Weltanschauung:•	  This is the, often taken for granted, outlook or 
worldview that makes sense of the root definition being developed. 
It is important to specify this because any system definitions can 
only make sense with some defined context. Thus a root definition 
needs only a single Weltanschauung.
Ownership:•	  This is the individual or group responsible for the pro-
posed system in the sense that they have the power to modify it or 
even to close it down. This can overlap with the actors of the system 
or the customers.
Environmental constraints:•	  All human activity systems operate within 
some constraints imposed by their external environment. These 
might be, for example, legal, physical, or ethical. They form part of 
the external relations of the system and need to be distinguished 
from its ownership.

The mnemonic CATWOE, is often used to summarize these six elements, 
taking the initial letters of the above six terms.

9.5 Using Root Definitions

To illustrate the use of root definitions, consider a simulation study (Gunal, 
Onggo, and Pidd 2007) conducted for a police force that began with a request 
for help in improving the performance of its Contact and Response Centers 
(CaRCs). CaRCs are the primary point of contact between members of the pub-
lic and the police force. People needing help or wishing to report and incident 
phone an emergency number and are connected to the nearest CaRC in which 
a call-taker talks to them and types a database entry, which is passed for 
response. The calls are graded by their severity so as to enable an appropriate 
response. The response is requested from local police units by radio opera-
tors who are also housed in the CaRC. The initial issue that presented itself 
was the poor performance of the CaRCs in answering the phone. The police 
force had agreed targets for answering calls but was nowhere near meeting 
them. Some callers had to wait a long time and some even complained about 
receiving an engaged tone. Neither was impressive for an emergency service 
that was provided for fearful or endangered citizens who may need help.

This study will be used to show how root definitions can illuminate stake-
holder analysis and shed light on people’s different concerns. Example root 
definitions will be developed to interpret how different groups might see 
the CaRCs themselves and also to tease out the expectations that different 
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 stakeholders may have of the study itself. The main stakeholders in this 
study were these:

The admin branch of the police force who had asked for help from •	
the simulation team. The admin branch is best regarded as the 
crowd in terms of their power and interest, since though they set up 
the study, the outcome does not directly affect them, and they have 
limited ability to change things, except through other people.
The police authority, which is a governance structure that, in the UK, •	
has responsibility for ensuring that the police force is accountable 
to the government and to the population. In terms of the power-
interest grid, the police authority is best regarded as a context setter, 
since it is accountable for expenditure and performance yet has no 
detailed interest in the working of the CaRCs.
Members of the public clearly have a great interest in the perfor-•	
mance of the CaRCs, but have no real direct power to do anything 
about them and they are best regarded as subjects whose interests 
need to be protected.
The operators who worked in the CaRCs, answering calls, and decid-•	
ing what resources were needed to resolve a situation and these are 
also subjects, since they have a great interest in working conditions 
but little direct power to affect the outcome.
The senior officers who are responsible for the operation and per-•	
formance of the CaRCs, who are best regarded as the players, since 
they do have power to change things as well as having very major 
interests in those changes.

A root definition (CATWOE) could be constructed for each stakeholder 
group and we now consider a few examples to illustrate the use of root defi-
nitions. Note, however, that these root definitions are not representative of 
the actual stakeholders of the actual simulation study but are used to illus-
trate the structure and point of root definitions.

9.5.1 r oot Definitions for the Car Cs

Consider, for example, members of the public who might call a CaRC, seek-
ing help from the police. How might such people see a CaRC in terms of a 
root definition?

Customers:•	  clearly, most members of the public would see themselves 
as the main beneficiaries of a properly run CaRC.
Actors:•	  it seems likely that any member of the public who thought 
about this would regard the staff and officers of the CaRCs as the 
principal actors.
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Transformation:•	  a member of the public is likely to see a CaRC as 
existing to receive calls that are transformed into appropriate and 
timely action.
Weltanschauung:•	  the previous three elements only make sense within 
a worldview that sees responsive policing as important for public 
safety and security.
Ownership:•	  since the CaRCs are funded through the police budget, it 
is clear that the owner is the police force itself.
Environmental constraints:•	  the CaRCs must operate within defined 
budgets, using available technology and responding in such a way 
as to provide an appropriate level of service.

Thus, seen in these terms, the CaRCs are a system that takes calls from the 
public and provides an appropriate and timely response for the benefit of 
the public who see such a response as necessary. The CaRC is run by the 
police force using staff and officers who operate within defined budgets 
using available technology.

As a slight contrast, discussions with the senior officers who manage the 
CaRCs may lead to a root definition something like the following.

Customers:•	  it is possible that the managers of the CaRCs might see the 
police force itself as the customer, since the CaRCs are part of respon-
sive policing, in which appropriate resources should be deployed to 
incidents in a timely manner. This does not mean that these officers 
would ignore the needs of the public, but they may have different 
customers in mind.
Actors:•	  it seems likely that managers would regard the staff and 
 officers of the CaRCs as the principal actors.
Transformation:•	  as mentioned in the discussion of customers, the 
transformation might be to turn information from the public into 
responsive policing.
Weltanschauung:•	  in the light of the previous elements, a worldview 
that makes sense is that the police force must engage in responsive 
policing.
Ownership:•	  since the CaRCs are funded through the police budget, it 
is clear that the owner is the police force itself.
Environmental constraints:•	  the CaRCs must operate within defined 
budgets, using available technology and responding in such a way 
as to provide an appropriate level of service.

Thus, in these terms, the CaRCs are needed to support responsive policing 
and are organized so as to provide a good responsive service, operated by 
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staff and officers within budget and technology constraints and owned by 
the police force.

9.5.2 r oot Definitions for the Simulation Study

As well as using root definitions to capture how different stakeholders might 
see the CaRCs, the same approach can be used to think through the simula-
tion study itself. Consider, for example, the admin branch of the police force 
who commissioned the work. Perhaps they are concerned to ensure that the 
CaRCs meet performance targets as part of an effort to show that this is an 
excellent police force. With this in mind, a possible CATWOE for a simula-
tion study might be as follows

Customers:•	  since the admin branch commissioned the study, they 
would probably see themselves as the customers.
Actors:•	  members of the admin branch are likely to see the simulation 
modelers as the main actors, whom they assist.
Transformation:•	  in these terms, the transformation is to move from 
being unsure why performance is poor to knowing what could be 
done to improve it.
Weltanschauung:•	  the previous three elements only make sense within 
a worldview that believes that a simulation model will provide use-
ful performance information.
Ownership:•	  since the simulation modeling is commissioned by the 
admin branch it is clear that they are the main owners as well as 
being customers. It is, though, true that the modelers could also 
close down the project.
Environmental constraints:•	  the simulation modeling must be com-
pleted within agreed budgets and timescales, possibly using agreed 
software.

Seen in these terms, the simulation project is one commissioned by the 
admin branch so that they may develop ways to improve the performance of 
the CaRCs within agreed budgets and timescales in the belief that a simula-
tion model will enable them to do this.

What about the staff and officers who work as operators in the CaRC? How 
might they see the simulation project. For simplicity we will assume that 
they share the public’s view of the CaRCs, but not the admin branch’s view 
of the modeling project. Hence, a possible CATWOE for their view of the 
modeling project might be as follows.

Customers:•	  the admin branch.
Actors:•	  admin branch and simulation modelers.
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Transformation:•	  to move from a situation in which staff and officers in 
the CaRCs use their expertise to manage the CaRCs to one in which 
a more technocratic approach is used.
Weltanschauung:•	  the people who don’t run CaRCs always think they 
know best how to improve their performance.
Ownership:•	  admin branch, and certainly not the staff and officers 
who work in the CaRCs.
Environmental constraints:•	  the project will have to be completed with 
whatever cooperation and time they can give in their over busy 
working lives.

Seen in these terms, the modeling project is one commissioned by the 
admin branch and only possible with the help of CaRC staff and officers, 
which may change the way they work in ways recommended by people 
who have never worked in a CaRC. If this is their view, they may be rather 
negative about the simulation project for fear that their working conditions 
will worsen or they may need skills that they do not possess. This empha-
sizes the view that the operators, as subjects, cannot be ignored and must 
be kept in the loop.

9.6 Using Root Definitions to Support Conceptual Modeling

It would be possible to develop root definitions for the other stakeholders 
both for the CaRCs themselves and for the simulation project so as to inter-
pret their different views. In this way, it is possible to tease out different 
worldviews and assumptions about the operation of the CaRCs and of the 
modeling project. It ought be clear that gaining this understanding may be 
crucial in gaining the cooperation that will be needed if the work is to pro-
ceed with any chance of success. It may, of course, be argued that any expe-
rienced analyst will intuitively think through such issues—but, the perfect 
never have anything to learn.

Old hands in the simulation community will remember when developing 
a model always involved writing code, whether in a general purpose lan-
guage or a simulation language. This was a tedious and error-prone process 
that forced the modeler to think very hard before writing code and provided 
an incentive for the development of tightly defined models for specific tasks. 
Contemporary simulation tools rightly free us from this drudgery, but their 
ease of use brings a temptation to dive straight to the keyboard and mouse 
and, later, to go on enhancing models. Like most temptations, this can result 
in initial pleasure but subsequent regret. Developing a conceptual model 
before diving for the computer can help reduce the appeal of this temptation, 
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which is probably why Robinson (2004) defines a conceptual model as a 
 non-software-specific description of the simulation model that is to be devel-
oped, describing the objectives, inputs, outputs, content, assumptions and 
simplifications of the model. This is a rather broad definition that might be 
better thought of as the conceptualization of a simulation model or a simu-
lation project, rather than a conceptual model. Leaving aside this semantic 
difference, however, it should by now be clear that such a conceptual model 
depends heavily on the degree to which the modeler has an understanding 
of the appropriate simplifications required in the simulation model and an 
appreciation of the project context within which the simulation model will 
be developed and used.

This chapter has argued that formal PSMs can be used to gain an 
 understanding of the context within which a simulation model will be built 
and may be used. It should also be clear that this is true of informal  methods 
such as critical examination as well as of formal approaches such as SSM. 
The aim is to see the issues from the viewpoint of stakeholders with interest 
in the project or the power to do something about it. Stakeholder analysis 
using power-interest grids provides some insight and allows an analyst to 
decide how best to devote their efforts in listening to people’s views and 
trying to satisfy them. Root definitions, as employed in SSM, allow the 
 analyst to interpret how stakeholders see the issues involved in the study. 
Thus, PSMs can assist an analyst in developing this  understanding and 
appreciation.
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10.1 Introduction

This chapter explores how soft systems methodology (SSM), a problem 
structuring method, can be used to develop an understanding of the prob-
lem situation and determine the simulation study objectives based on the 
experience gained in a real life simulation study in health care. Developing 
an understanding of the problem situation and determining the model-
ing objectives are two of the four phases of Robinson’s (2004) conceptual 
modeling. Robinson (2004) divides conceptual modeling into the following 
phases:

I. Developing an understanding of the problem situation•	
II. Determining the modeling objectives•	
III. Designing the conceptual model: inputs outputs and model •	
content
IV. Collecting and analyzing the data required to develop the •	
model

Robinson’s (2004) phases can also be used to describe the output of the 
conceptual modeling processes. There are two main processes involved in 
conceptual modeling: knowledge acquisition and abstraction (Kotiadis and 
Robinson 2008). This chapter explores how SSM contributes to these pro-
cesses in order to get an understanding of the problematic situation and 
determine the study objectives. 

This chapter is divided into four main sections. The introduction with its 
remaining subsections form the first section. The first section explores the 
conceptual modeling processes that the case study contributes toward and 
reflects on the appropriateness of SSM to conceptual modeling by looking at 
what others have said when they used SSM in their simulation study. The sec-
ond section explores the case study, which is broken down into subsections. 
These subsections include a description of the problem and the motivation 
for using SSM, a brief description of SSM in general and how it was applied 
to this case study in terms of knowledge elicitation and abstraction. However 
special attention is paid on how SSM was conducted and extended to deter-
mine the simulation study objectives and the section concludes with a set of 
guidelines. The third section provides a discussion about the opportunity to 
further adapt SSM to determine the study objectives and the benefits of the 
proposed approach. The final section provides a summary of the chapter. 

10.1.1 The Conceptual Modeling Processes

More recently Robinson (2008) defined the conceptual model to be “a non-
software specific description of the computer simulation model (that will be, 
is or has been developed), describing the objectives, inputs, outputs, content, 
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assumptions and simplifications of the model.” (p. 283). This definition of 
a conceptual model includes assumptions and simplifications. Kotiadis 
and Robinson (2008) discuss how these two artifacts of conceptual model-
ing (assumptions and simplifications) have been linked with the conceptual 
modeling processes of knowledge acquisition and abstraction (Figure 10.1). 
Knowledge acquisition is about acquiring knowledge and information about 
the real world from subject matter experts (SMEs). However, the real world is 
often not understood or fully known or knowable (if one is modeling a sys-
tem that does not exist) by the SMEs and assumptions must be made about the 
real world (Robinson 2008). The second process, model abstraction, is about 
the modeler obtaining the conceptual model by agreeing with the problem 
owners on what parts of the system description to model and at what level of 
detail. This process involves reducing the level of detail and/or the scope in 
the conceptual model in comparison to the system description. This  process 
of partially representing the system description in the conceptual model 
involves simplification. Robinson (2008, p. 283) explains that “simplifications 
are incorporated in the model to enable more rapid model development and 
use, and to improve transparency” of the model. The process of simplifi-
cation should focus on maintaining sufficient accuracy for addressing the 
problem situation/modeling objectives (Kotiadis and Robinson 2008).

In the next subsection we will look at the appropriateness of SSM with 
respect to the processes that have just been described.

Real-world

Problem domain

Knowledge acquisition
(Assumptions)

System
description

Conceptual
model

Model domain

Computer
model

W
hite and black

box validation

Model design
and coding

A
bstraction

(Sim
plifications)

Fig ur e 10.1
Artifacts of conceptual modeling. (From Kotiadis, K. and Robinson, S., Proceedings of the 2008 
Winter Simulation Conference, Institute of Electrical and Electronic Engineers, Inc., Miami, FL, 
2008. With permission.)
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10.1.2 The u se of SSM in Knowledge Acquisition and Abstraction

SSM has been described as an organized learning system (Checkland 1999a) 
that deals with complex and messy problematical situations. Complex and 
messy problematical situations can be characterized by a lack of understand-
ing by the modeler and/or client of the study context, a nonvisible system, 
a system that is difficult to understand, a context in which there are many 
stakeholders and a politically charged environment. The process of inquiry 
into such situations can be organized as a learning system. In SSM, the term 
system does not apply to a specific problematic area/domain (e.g., manufac-
turing system, health-care system) but to the enquiry process itself. 

SSM is a popular problem structuring approach because it can be used 
to structure the process of understanding in a rigorous and transparent 
fashion (Checkland 1999a, 1999b; Checkland and Scholes 1999). Despite its 
popularity there are a few studies reported in the literature that combine 
SSM with discrete-event simulation (DES), and nearly all the known exam-
ples are in health care (Lehaney and Paul 1994a, 1994b; Lehaney and Hlupic 
1995; Lehaney and Paul 1996; Lehaney et al. 1999). Pidd (2007) is the known 
exception who provides a general in depth discussion on the use of Problem 
Structuring Methods in simulation, which includes SSM. 

The oldest papers discussing the link between SSM and DES modeling are 
by Lehaney and Paul (1994a, 1994b), one of which is of particular interest as 
it demonstrates how an SSM model (the purposeful activity model (PAM)) 
can be developed as an activity cycle diagram using a case study of an out-
patient facility (Lehaney and Paul 1994a). A second paper by Lehaney and 
Paul (1994b), which is complimentary to the first one, uses the SSM model 
to question health-care participants in the development of the simulation 
model. However, neither of these papers are focused on how the simulation 
study objectives are determined. 

Lehaney and Hlupic (1995) review the use of DES for resource planning in 
the health sector and suggest the use of SSM as an approach for improving 
the process and research outcomes. Lehaney and Paul (1996) examine the use 
of SSM in the development of a simulation of outpatient services. The paper 
explains how the discussion of a PAM was used to determine the system that 
should be modeled out of a number of systems that could be potentially mod-
eled. The authors argue that this multimethodology allows the participation 
of the staff in the modeling process and they conclude that the participation 
paved the way for the acceptance of the conceptual model and gave rise to 
the final simulation being credible. However, the paper’s main contribution to 
conceptual modeling is that it suggests that SSM can be used to “tease out” of 
participants what actually should be modeled. Lehaney and Paul, however, do 
not specifically map the process for others to replicate. 

In a subsequent paper Lehaney et al. (1999) report on an intervention that 
utilized simulation within a soft systems framework, and they call it soft-
 simulation. The project uses SSM to map out the activities of a simulation 
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study through a case study of an outpatient dermatology clinic. Again it can-
not be readily used by other stakeholders to determine a conceptual model 
as it is focused on the modeler and the activities that he or she should under-
take in a simulation study. 

Baldwin et al. (2004) propose an approach to thinking, influenced by SSM, 
to enhance stakeholder understanding and communication in health-care 
simulation studies during the problem structuring phase. They acknowl-
edge the benefits of using SSM thinking for DES and contribute to that by 
linking some of their concepts. However, they focus on project management 
issues rather than conceptual modeling. 

The studies mentioned above advocate the benefits of using SSM in 
 simulation studies. Although these studies do not specifically focus on con-
ceptual modeling it is evident, although not always explicit, that SSM has 
contributed to it to some extent. Because, these studies do not specifically 
focus on the role of SSM in knowledge acquisition and model abstraction 
there is an opportunity to reflect on SSM’s contribution to these processes. 
These conceptual modeling processes are about understanding the problem-
atic situation in a rigorous and transparent fashion, and abstracting from 
this situation the conceptual model. Although one could argue that SSM’s 
main contribution is to problem structuring (knowledge acquisition), it does 
also have a role to play in model abstraction. In fact this chapter shows how 
SSM can help determine the simulation objectives, which is something that 
has not been seen in any other simulation study (Kotiadis 2007).

10.2 The Case Study: Intermediate Health Care

In this study, SSM was originally used for a similar reason to the one 
 mentioned by Lehaney and Paul (1996): to understand which dimension of 
the problem and system to model. In our case the health system was a com-
plex integrated health system for older people, called Intermediate Care (IC) 
in a locality in Kent. However, SSM was also found to be useful in other 
aspects that had not previously been anticipated, such as determining the 
conceptual model, particularly for conceptual modeling phases I, II, and 
most of phase III (Robinson 2004).

The study was part of a larger IC evaluation project commissioned for a 
locality in Kent, England in 2000 by the Elderly Strategic Planning Group 
and the Joint Planning Board for Care of the Elderly in East Kent (Carpenter 
et al. 2003). At that time IC services were a relatively new concept and their 
introduction can be attributed to the growing population of older people 
that in many cases were found to be inappropriately using the expensive and 
scarce secondary care resources (hospital-based resources). The Department 
of Health response to the National Bed Enquiry (Department of Health 2000) 
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stated that it intended a major expansion of community health and social 
care services (IC) that in contrast to acute hospital services would focus on 
rapid assessment, stabilization, and treatment. 

It was decided that DES modeling should be deployed as it had proved 
itself useful in other health-care studies in evaluating resources. However, 
we were having difficulty deciding how to model the IC system. The actual 
IC system at the beginning of the study was in its development phase and it 
was not particularly understood as a whole by any one person in the system. 
Knowledge acquisition in order to gain an understanding the system is gen-
erally considered the initial step of any simulation study and the initial out-
put of conceptual modeling. In this study it was not immediately apparent 
how to carry out this step because of the size of the system, the newness of 
IC, and the difficulties in observing the system as the changes in the system 
were slow and its services were geographically dispersed. More importantly, 
no one had an overall understanding of how the system worked. This meant 
a problem structuring approach like SSM could be used to get an under-
standing of how the system worked and how it could/should work.

10.2.1 A brief l ook at SSM in g eneral

For those that are not familiar with SSM, the following paragraphs present a 
brief overview of the methodology. To gain a more detailed understanding 
of SSM the reader should refer to Checkland (1999a, 1999b) and Checkland 
and Scholes (1999). In this case Checkland’s (1999a) four main activities ver-
sion of the SSM methodology was deployed, which consists of the following 
stages: 

 1. Finding out about a problem situation, including culturally/
politically

 2. Formulating some relevant PAMs
 3. Debating the situation, using the models, seeking from that debate 

both of these:
 a. Changes that could improve the situation and are regarded as 

both desirable and (culturally) feasible
 b. Accommodations between conflicting interests that will enable 

action-to-improve to be taken
 4. Taking action in the situation to bring about improvement

The processes of knowledge acquisition and model abstraction largely map 
on to SSM’s first and second stage. Therefore this chapter focuses only on 
these steps but readers interested in the other stages of SSM or the methodol-
ogy as a whole should consult Checkland (1999a, b). 

The following paragraphs concentrate on introducing the SSM’s tools that 
contribute to knowledge acquisition and model abstraction. There are two 
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main tools used to assist the modeler in knowledge acquisition (finding out 
about the problem situation): drawing rich pictures and analyses one, two, 
and three. Pidd (2007) provides an in-depth discussion on the latter. The 
CATWOE, root definition, and performance measures (three Es) are tools 
that contribute toward the process of constructing the PAM, which is an SSM 
model. The PAM contributes toward the process of abstraction. The remain-
der of this subsection provides some reflections on these tools. 

10.2.1.1 Rich Pictures

Rich pictures involve a holistic drawing of the situation of interest. The pic-
tures do not have a specific format or language but aim to encompass the key 
elements of a situation such as processes, issues and stakeholders. Because 
they are easy to understand they can be drawn in a participative way with 
stakeholders. For example they can be drawn by the modeler during a semi-
structured interview with a stakeholder or they can be drawn by a stakeholder 
or modeler in a participative way with a group of stakeholders. Therefore the 
advantage of using this tool to find out about the problematic situation is that 
it is non technical and enables a wide participation of stakeholders.

In terms of using this tool in knowledge acquisition for a simulation study, 
it is likely at the end of drawing a rich picture the modeler may not have a 
clear understanding of what should be modeled from this problematic situ-
ation, but will have a good grasp of the overall situation. This is particularly 
important when the modeler(s) or stakeholders are not familiar with overall 
situation but only a part of it. Also any initial assumptions about the situa-
tion can be brought forward through discussion and dealt with.

This SSM tool has not been particularly reported on in simulation stud-
ies. This could be attributed to the fact that almost all studies have been in 
health care. Drawing rich pictures is best achieved in a participative environ-
ment (including the modeler(s) and stakeholders) with a reasonable amount 
of time at hand to undertake the process, which is difficult to arrange with 
health-care professionals. Another reason is that this tool would be used at 
the start of the modeler(s)/stakeholders collaboration and the output of this 
tool tends to look like a child like drawing on flip chart paper. The modeler 
may feel that this tool does not fit with the image often sold to the client of 
working toward a computer model. On the other hand, modelers that use 
visual interactive simulation software have the opportunity to use the ani-
mation to discuss the problematic situation of interest but are limited to what 
can be drawn using the package. 

10.2.1.2 Analyses One, Two, and Three 

In addition to the use of rich pictures, Checkland (1999b) advocates analyses 
one, two, and three, otherwise respectively known as role analysis, social 
system analysis, and political system analysis.
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Role analysis, or analysis one, is an analysis of the intervention system that 
involves exploring three main roles: the role of the client (who has caused the 
study to take place) the role of the “would-be problem solver” (who wants to 
do something about the situation) and the role of the problem owner. All or 
some of these roles may overlap. 

Social system analysis, or analysis two, is based on the notion that a social 
system is a continually changing interaction of three elements: roles, norms 
and values. Roles are social positions of importance to the problem situa-
tion that are institutionally defined or behaviorally defined. The expected 
 behaviors are otherwise known as norms. In addition, performance in a role 
will be judged according to values. 

Political system analysis, or analysis three, is about understanding how 
power is expressed in a particular problematic situation. For example, power 
may be in the form of personal charisma or even membership to a particular 
committee.

Understanding the roles within a problem situation, typical behavior of 
the stakeholders and the allocation of power can mean that the modeler can 
manage the stakeholders during the conceptual modeling process (and the 
rest of the simulation intervention) and arrive at a conceptual model that is 
agreeable to all, desirable and feasible. All three analyses compliment each 
other and do not necessarily require to be undertaken in any particular order. 
Also the nature of some of the questions being asked should involve a certain 
amount of sensitivity and that can mean that some or all of this analysis may 
need to be done covertly (Pidd 2007). A possible solution to this is taking 
advantage of the rich picture drawing session to observe stakeholders and ask 
leading questions as part of analyses one, two, and three. This covert analysis 
is feasible as stakeholders can be made to feature within the drawings.

10.2.1.3 The Purposeful Activity Model

A PAM is an SSM model. The initial stage to developing a PAM is to define 
the system of interest using a structured approach involving a set of SSM 
tools. The SSM tools used as part of the process to develop the PAM also con-
tribute toward knowledge acquisition. However, in simulation conceptual 
modeling the PAM largely contributes to the process of abstraction.

Some SSM authors refer to the PAM as a “conceptual model,” but this has a 
different meaning to a simulation conceptual model. We will use conceptual 
model only with reference to simulation and PAM with reference to the SSM 
model. Checkland (1999a) provides both extensive guidance and examples of 
how to use the SSM tools (transformation process, CATWOE, root definition, 
measures of performance) to arrive at the PAM. These tools offer guidance 
on how to format a set of definitions to help develop the PAM. The defini-
tion of the system, called the root definition, can be loosely  compared to 
a company’s mission statement. However, central to the root definition is a 
need to demonstrate the transformation process (T) of some input to output. 
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Essentially the process undertaken to develop the root definition is an exer-
cise in focusing the mind on the experimental frame prior to constructing 
the PAM. 

Checkland (1999a) suggests that prior to constructing the PAM one should 
also define the measures of performance. He explains that it is necessary to 
“define the criteria by which the performance of the system as a whole will 
be judged” (p. A25) and suggests using the criterion of Efficacy (check that 
the output is produced), the criterion of Efficiency (check that the minimum 
resources are used to obtain the output), and the criterion of Effectiveness 
(check at a higher level that this transformation is worth doing because 
it makes a contribution to some higher level or long-term aim). Efficacy, 
Efficiency, and Effectiveness form the main measures of performance and 
are often referred to as the 3 Es. Checkland puts forward a further two crite-
ria, Ethicality (is the transformation morally correct?) and Elegance (is this an 
aesthetically pleasing transformation?), that may be useful in some cases. 

Checkland (1999a) suggests that once the definitions have been expressed 
(CATWOE, Root definition, measures of performance), it should be easy to 
construct the PAM. The process of constructing the PAM involves a certain 
amount of simplification as it is a record of the necessary activities to support 
the system’s transformation of input to output (see example in Figure 10.2). 
Checkland (1999a, b) recommends listing seven activities plus or minus two. 
The PAM is a simplification of the system description and has the potential 
to be used instead of the communicative conceptual model (e.g., an Activity 
Cycle Diagram) (Lehaney and Paul 1994a).

Checkland and Scholes (1999) explain that a PAM provides an idealistic 
view of the elements in a system and does not represent reality as partici-
pants are asked to think outside the current bounds of what is there. This 
enables the participants to compare reality with the idealistic view with the 
aim of reaching consensus on any feasible changes. The following section 
explains how the PAM contributes to the process of abstraction.

10.2.2 Applying SSM to the iC Health System

In this section, we will initially explore SSM’s contribution to knowledge 
acquisition and then to model abstraction in this particular case study. 

10.2.2.1 Knowledge Acquisition Using Analyses One, Two, and Three

In this study analysis of the roles, social and political system started early on and 
continued throughout most of the study. There were several people involved in 
this system and as the study was over a period of about three years, there were 
a lot of changes that redefined each analysis. For example, some employees 
within the system were promoted and therefore acquired more power and so 
could commission extensive changes to the system. Understanding the politi-
cal situation meant knowing what type of system would be feasible. From 
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the analysis of the roles we were able to understand what action some key 
stakeholders were prepared to undertake within the system. This also meant 
knowing who to persuade to organize meetings with other stakeholders to 
obtain information. Undertaking the social analysis enabled a better under-
standing of the stakeholders within the system and enabled the modeler to 
align herself to the culture of this health and social care system and through 
interaction gain access to information and insights. Also some behavior was 
directly or indirectly included in the simulation model. 

10.2.2.2 Knowledge Acquisition Using Rich Pictures

During the analyses above it became apparent that it would not be possi-
ble to observe the system as a whole because of its size, the slow pace of 
change in the system, and its geographic dispersion. Therefore, apart from 
observing individual services within the system and talking individually 
to stakeholders, it was very useful to meet concurrently with a number of 
stakeholders with knowledge of individual sections of the system as well as 
the key  stakeholders with power over the entire system. In this particular 
case study these meetings were mostly arranged on the back of preexisting 
meetings, which meant that there was only limited time available and the 
stakeholders on many occasions were preoccupied by the business from the 
other meeting. In addition these meetings were scheduled weeks apart from 
each other so the process was slow. 

We did not have the time to build up rich pictures with the dedication 
that one would observe in a stand alone SSM study but some ready made 
pictures of the processes within the system were brought along for discus-
sion. It should be noted that these were not referred to as rich pictures but 
as diagrams. The stakeholders were told that we were using these to help us 
understand their system. In fact these diagrams were not typical rich pic-
tures as they did not directly include issues or stakeholders. However these 
did emerge and get discussed within these meetings.

In hindsight it would have been better use of time for the modeler and 
stakeholders if a workshop was arranged for dedicated knowledge acquisi-
tion through rich picture building on the system as a whole. This opportu-
nity could have been identified in the political or role analysis. However this 
was not a failure in terms of the analyses, but a failure in recognizing how 
these key stakeholders could be best used to the advantage of the study. The 
information acquired using these tools (drawing rich pictures and analyses 
one, two, and three) should compliment each other and support the process 
of knowledge acquisition.

Despite the missed opportunity to have a dedicated knowledge acquisi-
tion workshop, as no one had an overall understanding of how the system 
worked, the short meetings helped structure this ill-defined problem situa-
tion. Within these meetings the modeler realized that the IC system was not 
working as a whole because the individual services had not yet integrated 
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their operational functions. SSM was able to deal with this because it enabled 
action research to take place. More specifically, the process of action research 
comprises of enquiry, diagnosis, action planning, action/intervention, evalu-
ation and learning (Hart and Bond 1995). The stakeholders, who were aware 
of this lack of system integration, were interested in action research, which 
means they were willing to take action to improve the system during the 
study and not just as a result of the findings of the study. Therefore, it was 
sensible to aim at building a simulation model of a future integrated system 
rather than of the current situation and use SSM to determine what was con-
sidered by the stakeholders to be a desirable and feasible future system.

10.2.2.3 Abstraction Using CATWOE, Root Definition, Es, and PAM

In SSM it is common practice to develop several PAMs within an interven-
tion. In this case, however, a primary task approach was adopted, in which 
only one relevant system (rather than many subsystems) that could poten-
tially map on to an organizational boundary was concentrated upon. The 
focus was on building one overall PAM because the main focus at that time 
was to get an overall understanding of the IC system that was agreeable to 
all involved in order to build the simulation model. The study participants 
were asked a number of questions about the system individually or in group 
meetings, but for reasons such as having to explain to such a dispersed and 
diverse audience the SSM tools and how to use them within relatively short 
meetings, the participants were not directly involved in structuring the defi-
nition or constructing the PAM. However a group of key stakeholders that 
examined the definitions and PAM agreed that this was the most agreeable 
and feasible view of how the system could work.

A root definition of the relevant system, the IC system, was put together 
from information gained in knowledge acquisition in order to build the 
PAM. The mnemonic CATWOE, one of Checkland’s best-known SSM tools 
and central to the process of deriving a root definition, was used to define 
the Customer, Actors, Transformation Process, Weltanschauung (the world-
view), Ownership, and Environmental Constraints. The definitions in terms 
of the IC system according to each of Checkland’s acronym guidelines are as 
follows:

Customers—the victims or the beneficiaries of the transforma-•	
tion process—are the people over 65 who require rehabilitation or 
convalescence. 
Actors—those who will do the transformation process—are the IC •	
employees, i.e., nurses, therapists, etc.
Transformation Process—the conversion of input to output—is •	
designing and operating a system of strategic and operational level 
activities to support IC in the locality. 
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Weltanschauung—the worldview that makes the Transformation •	
Process meaningful in its context—is a belief that these strategic and 
operational level activities are important in providing effective care 
for the older people.
Ownership—those who could stop the transformation process—are •	
the local health and social care authorities.
Environmental Constraints—elements outside the system that are •	
taken as given—include local IC funding, Department of Health 
guidelines, etc.

Using Checkland’s (1999a) guidance on how to cast a root definition, but 
also taking into account the CATWOE definitions above, the following root 
 definition was developed for the IC system:

Root Definition (RD) = A local health and social care–owned system 
operated by IC staff that supports IC in our locality by designing and 
operating a system of IC strategic and operational activities in order to 
provide effective care for the older people, while recognizing the con-
straints of local IC funding and Department of Health guidelines.

In terms of this research the three measures of performance, or the 3 Es, are 
the following: 

Efficacy (E1): to check that the IC function is supported through IC •	
strategic and operational activities
Efficiency (E2): to check that the minimum IC resources are used to •	
support the strategic and operational activities
Effectiveness (E3): to check that the strategic and operational activi-•	
ties enable older people to be rehabilitated in the most appropriate 
service for their needs

The criteria, Ethicality and Elegance (Section 10.2.1), were not defined in this 
study, as they were not considered to add to the evaluation of our system.

The measures of performance were broken down into a number of activi-
ties and incorporated in the monitoring activities part of the PAM of the IC 
system (activities A–M in Figure 10.2). The reader should note that this is not 
common practice in stand alone SSM studies.

The Root Definition, CATWOE, and the 3 Es guided the construction of 
the activity model that aims to show the transformation process T (activities 
1–11 in Figure 10.2). The process of building the activity model “consists of 
assembling the verbs describing the activities that would have to be there 
in the system named in the RD and structuring them according to logical 
 dependencies” (Checkland, 2001, p. 77). Checkland (1999a, p. A26, Figure. A6) 
provides a set of guidelines in constructing the PAM. Information supplied 
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by the stakeholders or observed during the first SSM stage (finding out about 
the problem situation), was used to determine the activities essential to the 
SSM transformation process.

The core PAM of the IC system can be seen in top part of Figure 10.2 (activi-
ties 1–11) and the right-hand section of this (activities 7–11) is closest to the 
computer model. Therefore the PAM is a simplification of the system descrip-
tion, but also with further abstraction provides the model description. More 
specifically, the PAM includes all the main IC operational activities (simpli-
fication/reduction in the level of detail in the conceptual model from that of 
the system description), but also describes in a focused way what actually 
takes place in the computer model (reduction in the scope of the concep-
tual model from that of the system description). Therefore, through this level 
of abstraction part the conceptual model can be derived from this simple 
 representation of the IC system.

10.2.2.4 Determining the Simulation Study Objectives

We now focus on how the simulation modeling objectives were derived from 
the PAM. Central to this process is breaking down the three performance 
criteria (Efficacy, Efficiency, and Effectiveness) that were defined for the sys-
tem into a number of activities that lead to an evaluation of this system. This 
process is not part of the standard SSM in constructing the PAM, but an 
extension aimed at producing a comprehensive line of questioning that sup-
ports the evaluation. This SSM extension forms the construction of the per-
formance measurement model (PMM). Similar to the process of constructing 
the standard PAM, the information for these activities was obtained through 
the interviews, group meetings and the literature. Although the stakehold-
ers did not participate in the construction of the PMM, they deemed it to be 
feasible and desirable.

In order to construct the PMM, the performance criteria were further 
 broken down into monitoring activities (e.g., in the bottom part of Figure 10.2 
the activities starting with “monitor”) and corresponding activities to deter-
mine the action needed (e.g., in the bottom part of Figure 10.2 the activities 
starting with “determine if”). Subsequently they were circled, arranged and 
linked using arrows in a logical order and given a letter rather than a number 
to distinguish them from the transformation activities in the PAM. The next 
step was to decide which of the performance activities in the PMM could 
contribute data or be explored in a simulation model, largely represented by 
the operational level activities in Figure 10.2. In fact the PMM activities apart 
from helping the modeler determine the simulation study objectives can also 
be used to determine the inputs and outputs of the model.

Nearly all of the PMM activities influenced the development of the simula-
tion study objectives, except for D, E, and H (Figure 10.2) as they could not 
be directly explored in the simulation model that focused on the operational 
level activities. Also activities A, B, and M do not form part of the simulation 
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study objectives as they relate to the process of building the PMM. The 
remaining PMM activities were logically grouped into the following ques-
tions that formed the simulation study objectives:

Are IC services working to their capacity (C and J)?•	
Are the IC patients admitted to the most appropriate IC service •	
(G, K, and L)?
Are there any service gaps (F, G, and I)?•	

If SSM had not been deployed, no doubt the first objective regarding capac-
ity would have been derived, since it is a typical simulation study question 
(Davies and Roderick 1998, Jun et al. 1999). In this study, capacity is exam-
ined by including all the places/beds available for each IC service in the 
whole  system simulation model and monitoring queues. 

The second and third questions, however, are more original and can be 
attributed to the use of SSM. To answer the second question the model emu-
lates the decision making process using a rule base that determines the 
service each patient should be sent to, based on a large number of patient 
characteristics (attributes). At the end of a run one can see if a particular 
patient or group of patients entered the service that they had actually entered 
in real life. The model is able to answer the third question by determining 
whether there is an appropriate service for each level of IC need by exam-
ining if there are gaps in the services mix. For example, it can be used to 
examine the effects of adding a new service or removing an existing service 
(Kotiadis 2006).

10.3 Using SSM to Determine the Simulation Objectives

These simulation study objectives guided the development of the simulation 
model, which met the needs of the stakeholders and led to an implementa-
tion of the study findings. Implementation of a simulation study has been 
described as a four stage model consisting of the following stages (Robinson 
and Pidd 2008):

 1. The study achieves its objectives and/or shows benefit.
 2. The results of the study are accepted.
 3. The results of the study are implemented.
 4. Implementation proved the results of the study to be correct.

Stage 3 and 4 are what are referred to in the literature as implementation. A 
number of authors (Wilson 1981, Lowery 1994, Jun et al. 1999, Fone et al. 2003) 
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who report a lack of implementation also provide advice to analysts with 
one notably common theme: to involve and gain the commitment of the 
users (health-care administrators and clinicians). Therefore if user partici-
pation will lead to implementation, then it is important to know how to 
involve the users in the model development. The most important part of 
model development is conceptual modeling because it is about deciding 
what to model and how to model it (Robinson 2004). In this chapter we have 
seen how SSM has been used to determine what to model in a case study 
in health care. The simulation study objectives are key to deciding what to 
model. We will now discuss some issues on determining the simulation 
objectives when using SSM for others adopting this approach to keep in 
mind. The first issue to be discussed is whether SSM can be further modi-
fied or adapted to determine the simulation objectives and the second issue 
whether there are any benefits in using SSM in determining the simulation 
objectives.

10.3.1  Can SSM be Adapted?

In this study, the SSM processes were adapted and therefore it is likely that 
others might wish to further adapt or even modify the existing SSM tools 
and approach to better map on to the specific needs of simulation studies. 
Checkland (1999a) in his 30-year retrospective of the use of SSM provides 
a lengthy discussion on what constitutes a claim to using SSM, but regard-
less of that emphasizes that SSM should be moldable to the situation. We 
initially reflect on an aspect of SSM that could be modified, although it 
was not modified it in this study, and then we reflect on an aspect of SSM 
that was adapted, but could be further adapted or even modified in other 
studies.

In SSM the PAM does not necessarily represent the current activities of 
a particular system of interest, which could be considered to conflict with 
the development of a DES conceptual model. In DES in general, the modeler 
builds a model of the current system that is verified and validated against it in 
an iterative manner until it is represented with sufficient accuracy. Exploring 
what could be there commences if and only if the model is considered to be 
a valid representation of the real system. In this study it was beneficial to 
actually move outside the current system constructs as it enabled creativity 
and led to alternative simulation study objectives. However, it may suit other 
simulation modelers to focus just on activities that are actually taking place 
in constructing the PAM, which would still enable modelers to benefit from 
deploying the SSM structured approach in defining the system. If this latter 
approach is adopted, the modeler could revisit the PAM after validation and 
verification of the simulation model and modify it to determine the simula-
tion scenarios.

Another extension relating to the construction of the PAM is that the 
activities are grouped to strategic or operational level activities. This, to this 
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author’s knowledge, is not a step in stand alone SSM studies but could be a 
useful extension when used in simulation studies as there is a clear opportu-
nity to map out the operational activities when done with stakeholders that 
may not easily distinguish the difference between the two. Another ben-
efit of including the strategic level activities is that these provide the system 
owners perspective, which can lead to a PMM and subsequently objectives 
more aligned to their needs.

In this study, greater emphasis was placed on the performance criteria 
than is usually placed in other SSM studies (Checkland and Scholes 1999, 
Wilson 2001, Winter 2006). The core PAM (strategic and operational) activi-
ties were also linked with an extended model of performance criteria that 
are referred to as the PMM, which is to this author’s knowledge again unre-
ported as a step in the SSM literature. This stage was largely internalized 
and emerged after a series of discussions and reflections when there was a 
reasonable correspondence between the two, i.e., the PMM activities would 
satisfy the needs of the strategic and operational activities. Based mainly 
on the experience gained from this study, it is proposed that the following 
generic guidelines can be used by others to construct the PMM and arrive at 
the simulation study objectives:

 1. Find out how the performance criteria developed relate to the real-
life situation. Reflect on how each activity, supporting the transfor-
mation process in the PAM, can be evaluated. 

 2. Break down the performance criteria into specific monitoring activi-
ties, which are activities that involve observing and recording infor-
mation. Where possible these activities should be in the format 
“monitor….”

 3. Consider what action might be taken based on each of the moni-
toring activities or their combinations. Where possible record this 
action in the format “determine if….”

 4. Where possible try and list the monitoring activities first and then 
link them according to logical dependencies to the “determine if” 
activities. Similar to the core PAM, circle each activity in the PMM 
and if helpful assign each a letter of the alphabet (rather than a num-
ber used in the core PAM).

 5. Consider each of the performance measurement activities and deter-
mine which can be evaluated in a simulation model. These selected 
performance measurement activities can form simulation study 
objectives, but if necessary group these activities and relabel them to 
form simulation study objectives.

However, the PMM and process to derive the PMM can be further adapted 
or modified in order to better support the particular needs of a simulation 
study. 
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10.3.2  What are the benefits of using SSM?

The more obvious benefits of using SSM to determine the simulation study 
objectives in the IC case were: (a) aiding the process of knowledge elicita-
tion for this complex system that was difficult to understand, (b) enabling 
abstraction to take place leading to the model content and objectives, and 
(c) making the process more transparent and comprehensive and engender-
ing creativity. Since the first benefit has been adequately covered in the case 
study and the second benefit in the previous section, this discussion focuses 
on the third benefit, regarding transparency. 

There are two reasons for needing transparency in determining the 
 simulation study objectives. First, there is a need for transparency so that sim-
ulation novices can learn how to determine a conceptual model. Conceptual 
modeling is currently treated as an art, which means that some aspects of 
conceptual modeling are difficult if not impossible to teach and most of the 
effort is spent demonstrating to students how to construct communicative 
models such as an activity cycle diagram. Unfortunately, this assumes that 
we have already gone through Robinson’s (2004) conceptual modeling stages. 
The approach using SSM, described in this chapter, is reasonably transparent 
and provides both steps and tools to assist the less experienced modeler to 
appreciate the thought process in reaching the simulation study objectives.

The second reason why transparency is important is that it helps to establish 
trust between the modeler and clients. Pidd (1999) points out that although 
transparency through simplicity is important, a model should not be limited 
by the technical abilities of the clients. Therefore the trust established in the 
SSM process can be carried to the DES model without needing to simplify the 
DES model in order for the client to have a complete understanding of it.

Another benefit in using SSM is that it can surface objectives that would 
otherwise not be obvious. Lehaney et al. (1999) report that SSM saves time by 
surfacing issues that might have otherwise been left dormant within a simu-
lation study. This is also the case in the study described here. The use of SSM 
ensured that the simulation objectives were appropriate and that the correct 
problem was addressed. In fact, based on this experience, it is reasonable to 
suggest that SSM leads to creativity in the conceptual modeling process.

Therefore the final and less obvious benefit from using SSM is that it can 
enable creativity to take place. Creativity is considered to encompass “seeing 
a problem in an unusual way, seeing a relationship in a situation that other 
people fail to see, ability to define a problem well, or the ability to ask the 
right questions” (Büyükdamgaci 2003, p. 329), which makes it an important 
element in problem definition. However being creative is difficult because by 
nature the brain is “hard wired” by its inherent abilities and predispositions 
(personality type) as well as the individual’s past experience to  function in 
a particular way (Büyükdamgaci 2003). This could mean defining the prob-
lem in a similar way to ones that have previously been experienced, called 
“functional fixation” (Duncker 2003). In this study the analyst had no prior 
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simulation modeling experience in health care and very little modeling 
experience in general reducing the risk of functional fixation, but was at risk 
of irrational attitudes experienced under high stress levels, namely “defen-
sive avoidance” and “hypervigilance” (Janis and Mann 1977). The former is 
about avoiding the problem by ignoring it and the later is about giving in 
to panic behavior and making decisions based on insufficient information. 
Fortunately, in this study, panic and stress led to the use of SSM!

10.4 Summary

This chapter set out to explain how SSM, a problem structuring method, can 
be used to develop an understanding of the problem situation and determine 
the simulation study objectives based on the experience gained in a real life 
simulation study in health care. Developing an understanding of the prob-
lem situation is the output of the conceptual modeling process of knowledge 
elicitation and determining the simulation study objectives is part of the con-
ceptual modeling process of abstraction that leads to the computer model. 
Figure 10.3 depicts the relationship in general of the SSM tools and some of 
the artifacts of conceptual modeling discussed in this chapter. The following 
paragraph provides an explanation of Figure 10.3.

The SSM tools that can be of use to the simulation modeler are (a) rich 
picture drawing, (b) analyses one, two, and three, (c) CATWOE and root 
definition(s), (d) the performance measures (3 Es), and (e) the PAM. The SSM 
tools a, b, and c can help structure the process of knowledge acquisition and 
the output of these tools can be produced with the stakeholders and provides 
and agreeable view of the problematic situation. In Figure 10.3 there arrows 
going in both directions to represent the output of the process being depos-
ited in the stakeholders’ minds as well as the SSM tools. The PMM is another 
tool, not listed as an SSM tool, as it is an extension to the usual SSM approach 
(3 Es) that provides the opportunity to abstract the simulation study objec-
tives and to some extent the inputs and outputs. In this chapter guidelines are 
provided on how to go about constructing the PMM. In addition to the PMM 
extension, the PAM is also constructed in a particular way; the PAM lists 
activities that are broken down to strategic and operational level activities. 
The computer model content can be abstracted at a high level from the opera-
tional level activities. However the objectives, inputs and  outputs, derived 
from the PMM, also inform the construction of the computer model.

Using SSM in conceptual modeling provides structure and transparency 
to the process of knowledge acquisition and abstraction and paves the way 
for stakeholder participation and ultimately acceptance of the simulation 
study finding and implementation of the recommendations.
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An Evaluation of SysML to 
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James Byrne, Paul Young, and Cathal Heavey

11.1 Introduction

First published in September 2007, the Systems Modeling Language (SysML) 
is a recent language for systems modeling that has a growing community of 
users and advocates in the field of systems engineering. This chapter gives 
an overview of SysML, identifies why it is of interest to the simulation com-
munity, and evaluates the feasibility of using this standard to support the 
conceptual modeling step in the discrete-event simulation (DES) process.

It has been recognized for many years that conceptual modeling is an 
extremely important phase of the simulation process. For example, Oren 
(1981) noted that conceptual modeling affects all subsequent phases of a 
simulation project and comprehensive conceptual models are required for 
robust and successful simulation models. Costly development time can be 
greatly reduced by clearly defining the goals and content of a model during 
the precoding phase of a simulation study. Despite this acknowledged impor-
tance, relatively little research has previously been carried out on the topic of 
conceptual modeling, as highlighted earlier in Chapter 1 of this book.
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Over the years a number of frameworks for conceptual modeling have been 
suggested with the aim of bringing standardization to what is perceived by 
many to be more of an art than a science (Kotiadis 2007). One of the earli-
est frameworks was put forward by Shannon (1975), which consists of four 
steps. The first step is to specify the model’s purpose, the second is to specify 
the model’s components, the third is to specify the parameters and variables 
associated with the components, and the fourth is to specify the relation-
ships between the components, parameters and variables. While these steps 
are still valid today, alternative frameworks have been presented in the years 
since then that refine the steps and/or focus on different aspects of the con-
ceptual model. Examples include Nance (1994), Pace (1999), and van der Zee 
and Van der Vorst (2005), among others. The most recent modeling frame-
work, presented by Robinson (2008), draws more attention to the goal of the 
model by encouraging the modeler to explicitly identify the model outputs 
and inputs prior to considering content. The steps of this framework are as 
follows:

Understand the problem situation•	
Determine the modeling and general project objectives•	
Identify the model outputs (responses)•	
Identify the model inputs (experimental factors)•	
Determine the model content (scope and level of detail), identifying •	
any assumptions and simplifications

In each case, the proposed modeling frameworks provide a set of steps 
that should be followed in order to compile a useful conceptual model. 
However, even with these frameworks in place a means of gathering and 
communicating the above listed information is still required. Typically a 
document-centric approach is taken for this whereby word processing is 
used to document and communicate the relevant information. While this 
has been and largely continues to be the standard approach adopted, there 
is now a move toward a model-centric approach. A number of researchers 
have documented the benefits of using a model-based approach, using proc-
ess modeling tools and techniques, to support the initial stages of a simula-
tion project (Van Rensburg and Zwemstra 1995, Nethe and Stahlmann 1999, 
Jeong 2000, and Perera and Liyanage 2000). These techniques include the 
following:

Petri Nets (Vojnar 1997, Ou-Yang and Shieh 1999, Balduzzi et al. 2001, •	
Koriem 2000, Shih and Leung 1997, Evans 1988)
Activity Cycle Diagrams (ACDs) (Richter and Marz 2000, Shi 1997)•	
Discrete Event Specification System (DEVS) (Rosenblit et al. 1990, •	
Thomasma and Ulgen 1988)
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UML Activity diagrams (Barjis and Shishkov 2001, Niere and •	
Zundorf 1999)
UML Statecharts (Richter and Marz 2000, Hu and Shatz 2004)•	
Process flow diagrams (Robinson 2004)•	
IDEF3 and IDEF0 (Van Rensburg and Zwemstra 1995, Al-Ahmari •	
and Ridgway 1999, Jeong 2000, Perera and Liyanage 2000)

ABCmod (Birta and Arbez 2007) and Simulation Activity Diagrams (Ryan 
and Heavey 2007) are model-based approaches that have been developed 
specifically for conceptual modeling. These techniques are discussed in 
detail in Chapter 6 and Chapter 12, respectively. 

A further standard that has been shown to be applicable to conceptual 
modeling is Business Process Modeling Notation (BPMN) (Onggo 2009). 
This is a graphical modeling approach that is used for specifying business 
processes. The notation has been designed to coordinate the sequence of 
processes and the messages that flow between the different process partici-
pants in a related set of activities (http://www.bpmn.org/). While this may 
address much of the information concerned in a conceptual model, there 
are further details that BPMN is not equipped to deal with. For instance 
while comparing BPMN with UML, Perry (2006) notes that BPMN is unable 
to model the structural view or the requirements of the process. The struc-
tural aspect of a system can be of importance in a conceptual model when 
it places a constraint on the system (e.g., logistical implications of relative 
location of processing stations). When the requirements and model purpose 
information cannot be held within the modeling environment then supple-
mentary documentation is required, thereby diminishing the advantage of a 
model-centric approach.

The parallels between simulation modeling and software development are 
discussed by Nance and Arthur (2006) and Arthur and Nance (2007) who 
investigate the use of software requirements engineering (SRE) techniques 
in simulation modeling. A notable contrast in the level of standardization in 
the two fields is identified with the authors observing that simulation meth-
odologies differ widely in formality and rigor. One tool that has promoted 
standardization in the software development world is the Unified Modeling 
Language (UML). This standard is used by software developers to define 
and communicate information, particularly in the requirements gathering 
and design stages of the software development process. Based on UML, a 
new graphical modeling standard called the SysML has been developed to 
support systems engineering. This chapter explores how this new standard 
could be used to support the conceptual modeling phase of a simulation 
project. First, an overview of the SysML standard is given with a brief history 
and an introduction to the primary constructs. The use of SysML within the 
simulation context is then discussed with reference to other research in the 
field and case study work that has been undertaken by the authors. Insights 
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into the strengths and weaknesses of a SysML-based conceptual modeling 
approach are presented with discussion around the direction of future 
research.

11.2 The Systems Modeling Language (SysML)

The Systems Modeling Language (SysML) is “a general-purpose graphical 
modelling language that supports the analysis, specification, design, verifi-
cation, and validation of complex systems. These systems may include hard-
ware, software, data, personnel, procedures, facilities, and other elements of 
man-made and natural systems” (Friedenthal et al. 2008b).

SysML is essentially a UML profile that represents a subset of UML 2 with 
extensions (Friedenthal et al. 2008a). UML is a language for specifying, visu-
alizing and constructing the artefacts of a software intensive system, which 
was designed to model object-oriented software systems, and has been used 
successfully in this field for over a decade (Booch 1999). 

Although UML has also been used to represent non-software systems, it 
is not ideally suited to this purpose and requires non-standardized use of 
model elements that can ultimately lead to confusion and incorrect interpre-
tation of diagrams. To adapt UML for non-software systems, the developers 
of SysML attempted to remove the software bias, and added semantics for 
model requirements and parametric constraints. The resulting SysML stand-
ard is a general purpose modeling language capable of specifying complex 
systems that include non-software components.

11.2.1 A brief History

In January 2001, the International Council on Systems Engineering (INCOSE) 
Model Systems Design Workgroup decided to adapt the UML for Systems 
engineering applications. Subsequently, INCOSE collaborated with the 
Object Management Group (OMG), which maintains the UML Specification, 
and together they developed the set of requirements for the new language. 
These requirements were issued by OMG as part of the UML for Systems 
Engineering Request for Proposal in March 2003.

In response to the OMG request for proposal, a work group called SysML 
Partners was formed in May 2003, which is a consortium of industry lead-
ers and tool vendors. They initiated an open source specification project to 
develop the SysML standard according to the outlined requirements and 
the first SysML draft was distributed in October 2003. By the summer of 
2005, disputes forced the work group to split into two (SysML Partners and 
SysML Submission Team) and in November of that year two competing SysML 
specifications were submitted to OMG. However in early 2006 the two teams 
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worked together with OMG to merge the competing SysML specifications 
into OMG SysMLTM Version 1.0. This was published as an official standard 
in September 2007. Reflecting on the development process, Weilkiens (2006) 
notes that the separation of the work group “had a positive effect on the 
quality of the SysML specification” as it encouraged creativity and critical 
review.

To maintain momentum in the development of SysML, the SysML Revision 
Task Force was promptly set up to examine the specification and recommend 
suitable revisions. These recommendations have been incorporated into the 
most recent version (at time of writing) of the specification, OMG SysMLTM 
v1.1, which was published on December 3, 2008, and is available from the 
OMG Web site, http://www.omgsysml.org/.

11.2.2 The SysMl  Diagrams and Concepts

SysML is a visual modeling language that provides semantics and notation 
for representing complex systems (OMG 2008). Although a number of soft-
ware vendors were involved in the development of the specification, SysML 
has remained methodology and tool independent.

As noted earlier, SysML is a subset of UML with extensions, which means 
that certain elements of UML that were deemed unnecessary have been 
removed while other elements have been modified or added to enable the 
 representation of non-software systems, see Figure 11.1. Specifically, SysML 
reuses seven of UML 2’s 13 diagrams and adds two diagrams (Requirements 
and Parametric diagrams), giving a total of nine diagram types. The removal 
of some UML elements is questioned by a number authors (e.g., Holt and 
Perry 2008) who highlight that software is still included in the list of system 
types that SysML can be applied to. However, UML 2 is widely criticized 
for being overinflated (e.g., Kobryn 1999) and there is strong justification, in 
terms of learning effort and consistency of use, for keeping the number of 
SysML elements to a minimum.

The two primary diagram categories are structural and behavioral, with 
structural diagrams specifying the parts of the system and their properties 
and the behavioral diagrams specifying the functional capabilities of the 
system.

The system structure is represented by block definition diagrams and 
internal block diagrams, which are based on the UML class diagram and 
UML composite structure diagram, respectively.

The•	  block definition diagram describes the system hierarchy and 
 system/component classifications through the representation of 
structural elements called blocks. Any block that exhibits behavior 
must have an associated state machine diagram.
The •	 internal block diagram describes the internal structure of a system 
in terms of its parts, ports, and connectors.
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The •	 parametric diagram is a restricted form of the internal block 
 diagram and represents constraints on property values.
The •	 package diagram represents the organization of a model in terms 
of packages that contain model elements.

The behavior diagrams include the use-case diagram, activity diagram, 
sequence diagram, and state machine diagram.

The •	 activity diagram represents the flow of data and control 
between activities and shows how actions transform inputs into 
outputs.
The •	 sequence diagram represents the interaction between collaborating 
parts of a system in terms of a sequence of exchanged messages. 
The •	 state machine diagram describes the state transitions and actions 
that a system or its parts performs when triggered by events. 
The •	 use-case diagram provides a high-level description of the system 
functionality in terms of how a system is used by external entities 
(i.e., actors).

The requirements diagram is neither structural nor behavioral. It supports 
requirements traceability by representing text-based requirements and their 
relationships with other requirements and model elements.

SysML also supports crosscutting, which is a means of linking between 
diagrams to represent associations between different model elements. The 
benefit of crosscutting is only truly realized in software tools that support 
navigation between and consistency checks across the various diagrams of a 
SysML model. Currently available software tools for creating SysML models 
are discussed later in Section 11.2.4.

As a complement to the diagrams outlined above, tabular representations 
are also supported in SysML to capture model information such as alloca-
tion tables, which support requirements allocation, functional allocation, 
and structural allocation. This capability facilitates automated verification 
and validation and helps to identify missing data and gaps in the model. The 
next section discusses some of the strengths and weaknesses of SysML as 
reported to date.

11.2.3 r eported Strengths and Weaknesses of SysMl

Being largely based on UML, SysML inherits many of its strengths along 
with some of its weaknesses. UML has been tried and tested for many 
years and has become accepted in the software industry thus providing 
SysML with a strong foundation to build on. The developers of SysML 
have also had the opportunity to cut some of the “semantic bloat” for 
which UML has been criticized. Although some still feel that unnecessary 
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redundancy still exists in the standard, Weilkiens (2006) notes that in 
 certain  circumstances redundancy can bring the benefit of a less complex 
model since model elements and relationships can be omitted from some 
diagrams.

Willard (2007) states that the main benefit of SysML is that it provides a 
standard and comprehensive system specification paradigm. He notes that 
the consistency that this brings in terms of model syntax and semantics, 
together with unambiguous graphical symbols, can greatly improve com-
munication. He proceeds to list the following side benefits that occur as a 
consequence to this main benefit:

It can avoid the need to normalize system definitions, i.e., if all •	
aspects of systems are defined in a common language, the need to 
translate definitions in cross sector projects is avoided.
It can increase the potential and likelihood of reuse.•	
It can mitigate vendor/tool interoperability problems.•	
It can simplify distributed team environments.•	

Looking at the field of simulation each of these stated benefits has relevance 
and is desirable. For instance, the type of comprehensive standardization 
described by Willard (2007) is noted to be lacking in simulation particularly 
in the area of conceptual modeling for DES where, as discussed previously, 
standardization is nonexistent. The use of SysML could help overcome inter-
operability issues in relation to simulation modeling tools that are currently 
unsupported in this respect. Additionally, it is acknowledged that consider-
able amounts of insightful information are unearthed during the concep-
tual modeling phase of a simulation study. The current difficulty is that this 
information is often lost after the project concludes. If the information is held 
in reusable sections of a graphical model, it will be available not only for 
future simulation projects but also any other type of process improvement 
initiative and continual management. This potential use of SysML is dis-
cussed further in Section 11.3.

An identified weakness of SysML is that it gives too much freedom to 
the modeler. It is therefore possible for important information to be rep-
resented in an obscure manner in a SysML diagram, which, as Herzog 
and Pandikow (2005) point out, could be “easily overlooked by a human 
reader.” UML models are true reflections of the systems they represent 
since the concepts that are used to develop UML models are also used to 
develop the software systems they represent. On the other hand, SysML 
models are just abstractions of the systems they represent. Any abstraction 
is open to interpretation; the freedom offered to SysML users means that 
these abstractions can be developed in various ways thus creating even 
further opportunity for confusion and miscommunication, particularly in 
larger scale systems.
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A further weakness of SysML is the associated learning effort. For  example, 
when asked by The Aerospace Corporation to evaluate SysML as a new 
 general-purpose modeling language (under a project named Quicklook), the 
Tactical Science Solution (TSS) Team at George Mason University recorded 
in their final report (Alexander et al. 2007) that it took 1.5 man months to 
train the project teams to an acceptable competency in SysML and a SysML 
tool. They also note that users who had no background in UML took 50% 
longer to be trained to a “level of competency in which they were able to 
produce acceptable results” than users with a UML background. The team 
spent 300 hours training in total. They concluded that

The TSS Team’s training and engineering results show that a design 
team can learn and use SysML in a reasonable amount of time (five stan-
dard workweeks) without significant training or experience. In this way, 
Project Quicklook has dispelled the notion that organizations cannot 
use model-based systems engineering with SysML because the start-up 
resource cost is too high. 

While this may be an acceptable training period for people such as sys-
tems engineers who will regularly use the standard, could it be consid-
ered a significant commitment in other cases where the nature of the 
users would be different? For instance in a simulation modeling context, 
it may be feasible for simulation modelers to learn the standard as they 
could continually use it. However, if the modeler is eliciting information 
from a manufacturing engineer during a project, it may not be feasible 
for the engineer to learn the standard in order to communicate with the 
simulation modeler by commenting on, adding to or modifying SysML 
diagrams. Noting this, some effort has already been made by SysML tool 
vendors to support communication with stakeholders who are unfamil-
iar with SysML, through alternative user interfaces. This, however, entails 
additional development effort on the part of the modeler; this topic is dis-
cussed further in the next section.

One of SysML’s greatest strengths is the level of interest that it has received. 
The number of industrial partners who have contributed to its development 
illustrates practitioner recognition of the need for SysML and an eagerness 
to make standardized graphical modeling notation freely available. These 
partners include significant industry leaders such as IBM, Lockheed Martin 
Corporation, BAE Systems, the Boeing Company, Deere & Company, and 
NASA. As noted earlier, tool vendors also showed their support for the lan-
guage by contributing to the development process. Herzog and Pandikow 
(2005) highlight that the number of tool vendors involved in drafting the 
SysML specification shows that “there exists not only a pull from the market, 
but also a push from the vendor community.” This type of across-the-board 
support significantly strengthens the likelihood of widespread adoption of 
SysML.
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11.2.4 SysMl  Tools

To date there are six commercial and two open source tools available for 
developing SysML models.

Artisan Studio•	  by Artisan Software Tools is a UML tool that has 
been developed to fully support the SysML profile (http://www. 
artisansoftwaretools.com/).
Tau G2•	  by IBM is a standards-based, model-driven development 
solution for complex systems (http://www-01.ibm.com/software/
awdtools/tau/).
Rhapsody•	  also by IBM is a UML/SysML-based model-driven devel-
opment for real-time or embedded systems (http://www-01.ibm.
com/software/awdtools/rhapsody/).
MagicDraw•	  by No Magic is described as a business process, architec-
ture, software and system modeling tool, having a specific plugin to 
support SysML modeling (http://www.magicdraw.com/).
Enterprise Architect•	  by Sparx Systems is a UML analysis and design 
tool with a module for developing SysML models (http://www.
sparxsystems.com/). 
EmbeddedPlus Engineering offers a SysML toolkit as a third party •	
plugin for IBM Rational (http://www.embeddedplus.com/).
TOPCASED-SysML•	  is a SysML editor that has been developed by 
the open source community (http://gforge.enseeiht.fr/projects/
topcased-sysml/)
Papyrus for SysML•	  is an open source UML tool based on the Eclipse 
environment and includes all of the stereotypes defined in the 
SysML specification (http://www.papyrusuml.org/).

These are all the tools that fully support SysML at the time of writing but 
the standard is still relatively new and more tools are bound to emerge. For 
instance, Visual Paradigm is a UML design tool that has begun to include 
some SysML capability but to date has only implemented the Requirements 
Diagram. Additionally there is a SysML template available for Microsoft 
Visio, however this allows for SysML diagrams to be drawn rather than 
SysML models to be created. The distinction here is that SysML diagrams 
in Visio will lack the integration and interactivity that a truly model-centric 
approach will benefit from.

As can be seen above the majority of tools for developing SysML models 
are computer aided software engineering (CASE) tools in which the UML 
capabilities have been enhanced to accommodate the SysML specification. 
This has significant benefits in terms of providing features that have been 
tried and tested in a UML context for longer than the SysML standard has 
even existed. The drawback of the history of these tools is that they are 
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primarily designed for the software market rather than for the broader user 
base that SysML is intended for and therefore may not meet the expectations 
of all users.

The type of features that these tools offer include integration with SRE 
tools to aid population of Requirement Diagrams and repository-based 
architectures to support model sharing and multiuser collaboration over 
local networks. These tools offer crosscutting functionality, which allows 
relationships between elements on different diagrams to be defined thereby 
tying the model together. These relationships allow for information that has 
been defined in one diagram to be automatically added to another and help 
maintain consistency throughout the model. This is the type of integration 
that is difficult if not impossible to achieve when using the SysML template 
in Microsoft Visio.

In terms of improving the communication of a SysML diagram, many tools 
allow users to upload and use images that are more representative of the 
model elements. They also allow users to toggle on and off model block com-
partments to hide and show information (e.g., block parameters) as required 
and prevent information overload. A number of tools allow for the execu-
tion of model diagrams. This functionality allows the user to step through 
the sequence of activities and see how various activities are triggered. This 
is useful for initial validation of the model and for subsequently commu-
nicating the details, and demonstrating the functionality, of the system to 
others. To further aid communication, particularly to stakeholders who are 
 unfamiliar with SysML or not from a technical background, a number of 
tools allow for alternative graphical and often interactive views to be used. 
These non-SysML views are either developed within the tool itself or the tool 
is designed to interact with external GUI prototyping tools, as in the cases of 
the graphical panels in Rhapsody and the integration of Artisan Studio with 
Altia Design, respectively.

Recognizing that document-based reports are still often required, many 
SysML tools allow for templates to be automatically populated with infor-
mation about model requirements, content and relationships. Information 
about the model can also be exported in XMI format (XMI [XML Metadata 
Interchange] is an OMG standard) to allow for communication between dif-
ferent SysML tools. The next section discusses current and potential use of 
SysML in the simulation modeling domain.

11.3 SysML and Simulation

Research and discussion around the use of SysML in the simulation domain 
has been presented by McGinnis et al. (2006), Kwon and McGinnis (2007), 
Huang et al. (2007), and Huang et al. (2008). McGinnis et al. (2006) examine 
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engineering tools that support factory design. In particular, they focus on 
the tools that provide sufficient support for automatic generation of simula-
tion models that address factory design decisions. They define a factory CAD 
or F-CAD system as an integration of a number of commercial off-the-shelf 
(COTS) tools: CAD tools, simulation tools, data management tools, collabora-
tion tools, and SysML tools. They provide an example, based on a wafer fab, 
in which they use SysML for building a plant metamodel and for describing 
basic fab entities with logical representations. They conclude that it is also 
possible to introduce control rules by SysML to generate automatically the 
associated simulation models.

Kwon and McGinnis (2007) deal with the use of SysML for structural 
modeling of a factory and present a more generalized conceptual SysML 
framework based on the study of McGinnis et al. (2006). The framework is 
composed of four layers supported by a number of COTS tools.

The first layer is an abstraction layer that has a collection of SysML •	
diagrams that identify domain reference classes.
The second layer is a domain reference layer that contains geometric •	
models and a group of classes such as operations, attributes, ports, 
and constraints in order to facilitate the reuse of simulation models.
The third layer is an instance layer that includes all the simulation •	
data for a particular system.
The last layer includes a generator that converts the language •	
 independent instance model from the instance layer to a specific 
simulation model.

Huang et al. (2007) demonstrate a method of translating a SysML model of a 
real system into different instance SysML models suited to different analysis 
techniques (simulation or queuing network analysis). They illustrate how a 
simulation model can be automatically generated from these models using 
XMI, a parser application, a database and a simulation modeling tool. Huang 
et al. (2008) discuss the possibility of on-demand simulation model generation 
based on the techniques described in the previous papers discussed here. 

There is a strong case for improving/automating the process of devel-
oping a simulation model from SysML diagrams especially if the use of 
SysML becomes as widespread as anticipated. However before generating 
a simulation model in this manner the SysML model needs to be created; 
this in itself is not a trivial task. As noted earlier, it has been reported that 
it takes approximately 1.5 man months to reach an acceptable standard 
of proficiency in SysML. One approach to developing SysML models is to 
translate existing domain-specific models into SysML. A graph transforma-
tion approach has been proposed for undertaking this task (Paredis and 
Johnson 2008, Johnson et al. 2008) that uses the Triple Graph Grammars 
(TGG) approach (Schürr 1994) to accomplish bidirectional transformation 
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between the domain-specific language and SysML. This approach has been 
demonstrated with the Modelica language (Mattsson et al. 1998) and Paredis 
and Johnson (2008) report that further work is being conducted to illustrate 
the approach with Matlab Simulink and eM-Plant. This approach of course 
is only useful if the system is already described in a formal model. The next 
section describes the authors’ experience of building a SysML model from 
the perspective of gathering information and defining a conceptual model 
for a simulation study.

11.3.1 Conceptual Modeling with SysMl : An example

As part of a SysML evaluation we retrospectively looked at a process analysis 
conducted in an electronics manufacturing plant and built a SysML model of 
the information. The information presented here was gathered while under-
taking the initial steps of Robinson’s conceptual modeling framework, i.e., 
understand the problem situation and determine the modeling and general 
project objectives. The original report (essentially a first iteration concep-
tual model) can be classed as document-centric: a 24-page document prima-
rily containing text with some supplementary sketches to illustrate certain 
aspects of the system. This data were collected through a series of on-site 
meetings/interviews over a three-day period. 

The first meeting was with a senior manager who gave an overview of how 
the production facility operated and outlined the primary business objectives 
and constraints. Next, one of the production engineers gave an extensive line 
tour describing the processing steps and product flow. This engineer then 
identified three line managers who could provide more detailed information 
on the day-to-day running of the production lines, the problems that occur and 
the remedial action that is taken. In addition to these shop floor meetings, a 
further meeting was held with a member of the team responsible for calculat-
ing capacity requirements and staffing levels. This was a critical decision proc-
ess for the company as the products experienced highly seasonal demand and 
staff training took up to five weeks due to the complexity of the products. 

In addition to recording notes on each meeting, CAD files of the plant 
layout, sample documents and spreadsheets relating to the process steps 
and process flow diagrams were also collected. Interestingly, process flow 
diagrams were only available for four of the seven major process steps and 
within these four process flow diagrams there were three different formats. 
The key assembly process steps, around which the line was built, were sur-
prisingly among those without corresponding process flow diagrams. The 
collected information was compiled into a structured document describing 
the flow of material from when the customer order is placed and components 
are requested from a third party warehouse, through the production process 
and out the shipping dock at the end of the line. 

Using this data, a SysML model was built in Artisan Studio Uno. A high-
level description of the production process was developed using an Activity 
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Diagram (Figure 11.2). Although largely illegible at the scale shown here, 
one can see that the general format is not dissimilar to that generally used 
in process mapping. Decision nodes for instance are represented by a famil-
iar diamond shaped symbol and the alternative routes are labelled with the 
associated decision criteria (see the lower zoomed section of Figure 11.2). A 
particularly useful attribute of SysML is the ability to segregate informa-
tion and avoid overly complex diagrams. The activity diagram in Figure 11.2 
describes the series of activities that occur from when a customer places a 
purchase order until the product is shipped. While this diagram does not 
describe in detail every step of what is a complex production process, it does 
allow the reader to very quickly get an understanding of what is involved in 
fulfilling a sales order. Additional more detailed information is made avail-
able to the reader in further activity diagrams. Here we give the example 
of the “Kit Components” activity, which yields the “Component Kit” (see 
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Activity diagram of overall production process.
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the upper zoomed section of Figure 11.2) that is used in the subsequent 
assembly activity. The “rake” symbol on the upper right-hand corner of the 
“Kit Components” activity indicates that there is a more elaborate diagram 
associated with this model element. The diagram associated with the “Kit 
Components” activity is shown here in Figure 11.3.

SysML activity diagrams can also show how physical objects in the system 
interact with the represented activity. For instance in Figure 11.3, it can be 
seen that the “Kit Components” activity takes in components (high value and 
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High-value components
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Kit container
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Standard components

<<block>>
component kit

Fig ur e 11.3
Activity diagram of the kitting process.
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standard) and a kit container and outputs a component kit. Even with this 
straightforward kitting activity, the advantages of compartmentalizing data 
in order to prevent information overload can be seen. A further advantage of 
this modular approach is that once an activity has been described it is avail-
able to be referenced from any diagram or reused in another model. Indeed 
this idea of information reuse and cross referencing is an integral aspect of 
SysML modeling and helps ensure consistency across model diagrams.

An example of this type of integration is shown here with the 
“StartConveyor” step in Figure 11.3 although as this is essentially a docu-
ment-based description of a model-centric approach the integration is not 
apparent. This “StartConveyor” step is in fact an event that had been previ-
ously defined in a State Machine Diagram for the conveyor (see Figure 11.4) 
and was added to this diagram. It is therefore the same piece of information 
shown in two different diagrams and therefore if it is changed on one it also 
changes on the other. The State Machine Diagram in Figure 11.4 shows how 
this event causes the conveyor to go from an “idle” state to an “operating” 
state. This diagram also shows that this can only happen when the conveyor 
is in an active state (i.e., switched on). The Activity Diagram in Figure 11.3 on 
the other hand shows when this event occurs in the Kitting Process.

The level of freedom offered when using SysML does bring certain dif-
ficulties to the modeling exercise as it is often unclear which way is best to 
represent information. Even in the relatively simple case of describing the 
generic types of component required by the manufacturing activity to fulfil 
a sales order it is possible to create initially confusing diagrams such as the 
Block Diagram in Figure 11.5.

This block diagram shows two types of relationship: the connector with the 
white triangle represents the Generalization relationship, which can be read 
as “is a type of” (e.g., a Chassis is a type of bulky component) and the connec-
tor with the black diamond represents the Composition relationship, which 

StopConvey or/
StartConvey or/

Idle

Operating

Active
Inactive

SwitchOnConvey or/

SwitchOffConvey or/

stm (block) conveyor

Fig ur e 11.4
State machine diagram for the conveyor.
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can be read as “is made up of” (e.g., the Server product is made up of one 
or more drawer assemblies, one or more covers and possibly a door). Once 
the reader is aware of the meaning of the connectors the diagram becomes 
less confusing, however, considering that this diagram only shows generic 
component types there is potential for it to grow out of control when specific 
part numbers are included.

However, once relationships have been entered into a SysML model it is 
possible to generate alternative views of the same information. For exam-
ple, the majority of the content of the Internal Block Diagram shown in 
Figure 11.6 and the Block Diagram in Figure 11.7 was generated automati-
cally based on the composition relationships defined in Figure 11.5 (the 
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physical connections in Figure 11.6 were added manually and the con-
straint information in Figure 11.7 was based on a Parametric Diagram in 
the model) and both of these show more clearly what parts a Server product 
is made up of. The important point here is that a SysML model is more than 
a collection of pictures it is also the underlying logic that is represented 
in the pictures. This logic is valuable knowledge that once entered can be 
reused and centrally maintained.

The diagrams presented so far relate primarily to material and material 
flows. When examining a system during a simulation project, the flow of 
information through the system is also of importance as this often contains 
much of the system logic that must be incorporated into the simulation 
model. Figure 11.8 shows a sequence diagram that illustrates the connection 
between the company receiving a sales order from a customer for a new 
product and then placing a purchase order with a vendor for components. 
The diagram shows that the information is passed through a number of inte-
grated software systems during this process. While these software systems 
may not need to be explicitly represented in a simulation model of the sys-
tem, the logic of determining the production requirement and comparing 
this with the available material will need to be captured.

A feature of this model-centric approach that is of particular benefit in the 
simulation context is the ability to clone a diagram and edit it. This new dia-
gram can be used to describe proposed design alternatives or  experimental 
settings, and can be readily compared to the original. Furthermore, SysML 
modeling is suited to the concepts of simplifications and assumptions as 
used in conceptual modeling for simulation. Take for example the case 
shown earlier of the Kitting Process. If it is decided that the objectives of 
the model require this process to be modeled in detail, then the lower-level 
information in Figure 11.3 is used, if not, then it can be represented as a 
single activity as in Figure 11.2. The power of having this information in 
SysML is that the detailed information is retained and available for future 
projects. By scoping diagrams to packages (akin to organizing files into fold-
ers in Explorer) it is possible to signify which information forms part of the 
current conceptual model and which falls outside the scope of the current 
project. The issue with this approach is that if the SysML model of a produc-
tion plant for instance is to be maintained as a central information reposi-
tory that can be drawn upon for future simulation projects then there will 
be various conceptual models with overlapping information and alterna-
tive perspectives on the system and organizing packages in this manner 
will quickly become complex. The distinguishing difference between using 
SysML for conceptual modeling and for systems engineering is that con-
ceptual modeling requires both an understanding of the real system and 
an understanding of the simulated system (with the assumptions and sim-
plifications that make it different from the real system) whereas systems 
engineering deals only with the real system. Conceptual modeling there-
fore has additional perspectives and interpretations to deal with that make 
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maintaining a SysML model more difficult. For example, the simple process 
shown in Figure 11.8 does not indicate what might happen if stock levels 
increased (perhaps due to components being reclaimed from scraped prod-
ucts) after a purchase order is generated. While the real system occasionally 
experiences this problem the model did not attempt to include this complex-
ity. This and other issues are discussed in Section 11.4.

The original document that this SysML model was based on was in itself a 
useful resource for the company as it provided an end-to-end description of 
the process and it uncovered a number of interactions between processing 
areas that affected efficiency. One simple example of this was the realiza-
tion that when certain data queries were ran in one section of the produc-
tion facility it delayed the production order release process at the beginning 
of the line as it slowed down the process of identifying orders for which 
all components were available. This beneficial effect is widely reported in 
simulation studies, for instance Robinson 2004 suggests that possibly 50% of 
the benefit is obtained just from the development of the conceptual model; 
“The modeller needs to develop a thorough understanding of the operations 
system in order to design an appropriate model. In doing so, he/she asks 
questions and seeks for information that often have not previously been con-
sidered. In this case, the requirement to design a simulation model becomes 
a framework for system investigation that is extremely useful in its own 
right.” Shannon (1975) even suggests that in some cases the development 
of a conceptual model may lead to the identification of a suitable solution 
and eliminate the need for further simulation analysis. Considering that 
some SysML tools allow for the diagrams to be “stepped through” (as dis-
cussed in Section 11.2.4), the use of SysML provides an even greater chance 
of resolving issues during the conceptual modeling phase as inconsistent 
information will be highlighted and cause and effect relationships can be 
explored. This SysML feature could have benefits for the validation of con-
ceptual models and ensuring that a correct understanding of the system has 
been achieved. 

To be successfully utilized in conceptual modeling, SysML needs to be 
compatible with the frameworks for conceptual modeling as discussed in 
section 11.1. Taking the most recent framework, Robinson 2008, the first step 
of understanding the problem situation can occur much more quickly if a SysML 
model of the system under investigation (SUI) already exists. Even if one 
does not exist, the process of developing a model would provide a struc-
tured means of gaining useful insight into the situation. The second step of 
determining the modeling and general project objectives is not directly solved by 
the use of SysML. This is an important step as it determines the direction 
of the simulation study and simply having a SysML model will not ensure 
that the correct model objectives have been identified. Techniques like the 
soft systems methodology (SSM) as discussed by Kotiadis 2006 and Kotiadis 
2007 can be used to elicit the objectives from stakeholders. The purposeful 
activity models (PAMs) generated during SSM can be represented within a 
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SysML model using activity diagrams and the determined objectives can 
be recorded in SysML requirements diagrams. This would support  central 
 retention of information and would allow SysML relationships includ-
ing “trace” and “satisfy” to be used to identify how model objectives are 
addressed in the simulation. As a simple example, an activity that records the 
number of products exiting a particular processing station could be traced 
to an objective to determine system throughput thus explaining why this 
activity is required in the simulation. It would be advantageous if SysML 
tools were able to highlight clearly any model elements that did not trace 
back to a requirement or similarly requirements that were not satisfied in the 
model. This did not appear to be possible in any of the SysML tools reviewed 
to date. The next steps of identifying the model outputs and identify the model 
inputs are readily supported by SysML object parameters and parametric 
diagrams. The final step of determining the model content, while identifying 
any  assumptions and simplifications, can be successfully recorded in a struc-
tured manner in SysML as discussed earlier in regard to the kitting proc-
ess example. By having a formal graphical model of the SUI, it is suggested 
that the difficult task of deciding on which assumptions and simplifications 
to make will be eased with natural selections and associated implications 
becoming more clearly recognisable.

On review of existing research in the area and the experiences gained while 
using the language, it is proposed that there is potential for using SysML as a 
common thread that could underlie all the activities undertaken in a simula-
tion study from the initial requirements gathering phase through defining 
the conceptual model and on to the development of the simulation model 
(see Figure 11.9). Once information has been captured during one activity it 
would be available in a useable format for the next.

In this section it has been shown that there is merit in using SysML in the 
conceptual modeling process. It is capable of representing the type of infor-
mation typically handled in this simulation phase such as information and 
material flows and moreover it brings structure and standardization that can 
greatly help knowledge transfer and reuse. There are nonetheless a number 
of challenges for the adoption of SysML as the standard conceptual mod-
eling format. These are discussed in the next section.

OMG SysMLTM

Requirements
gathering

Conceptual
modelling

Simulation
modelling

Fig ur e 11.9
SysML: A common foundation.
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11.4 Challenges for SysML-Based Conceptual Modeling

The key problems encountered when developing the SysML model dis-
cussed in the last section related to establishing: where to begin the model; 
which diagrams to use; and which way to present the data in these diagrams. 
Consulting available SysML literature on these fundamental questions typi-
cally returned answers that begin with the phrase, “It depends.” While 
unsatisfactory at the time, a little SysML modeling experience proved this 
to be a justified prefix to the answers as the best diagram for representing 
a piece of information is dependent on many factors including the intended 
audience, the aspect of the information to be highlighted and if other addi-
tional information is to be represented. Consequently, it is more important 
to enter the information into the model than to deliberate on which diagram 
is best. As shown with the component category example in Figure 11.5, once 
the information has been captured it is possible to generate various diagrams 
and to show/hide different attributes of the model elements (e.g., Figures 11.6 
and 11.7). In this way the most appropriate diagram/diagram layout can be 
selected for the circumstance at hand. A criticism of this capability would 
be that surplus information can be created in redundant diagrams, however, 
once the SysML modeling software has the appropriate consistency manage-
ment features this should not pose a problem.

Another encountered problem was an inability to easily include a sketch of 
the production facility into the SysML model. The original document-centric 
model included such as sketch and it had proven effective for illustrating 
which areas were being referred to at any given point. Of course it was pos-
sible to describe the structure using block and internal block diagrams but a 
sketch that more closely resembles the physical structure would be beneficial 
when communicating with stakeholders. As noted in Section 11.2.4 certain 
SysML tools do have the capability to include alternative graphical represen-
tations but these can require considerable effort to develop and can be more 
complex than is generally required.

One consideration when using SysML for conceptual modeling is pos-
sible confusion around whether the model represents the SUI, the intended 
simulation model of this system, or indeed both of these. Two features of 
the SysML specification that can be used to address this issue are view-
points and views. A viewpoint describes a perspective of the model that 
is of interest to a specific set of stakeholders. When defining a viewpoint, 
the reason for the perspective, the stakeholders of interest and the concerns 
to be addressed are specified. A view is then a type of package that con-
forms to a viewpoint and is intended to provide the model information that 
addresses the stakeholders concerns. By defining a real-world viewpoint of 
the system, a simulation model viewpoint of the system, and/or a simulation 
model viewpoint of how the system could/should be, this SysML function-
ality can be used to clarify the differences between various perspectives. 
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Specific guidelines for creating these viewpoints in a standardized format 
would be beneficial.

In terms of the diagram content, there are some aspects of existing mod-
eling techniques that are not present in SysML. For instance in flow charts 
the cylindrical node is used to represent a direct data source, the SysML 
specification does not include specific nodes like this but the aforementioned 
freedom in the standard does allow custom node images to be added. The 
issues with this however are the loss of standardization and greater oppor-
tunity for misinterpretation.

SysML can however be tailored for use in specific domains. This is accom-
plished by developing specialized model libraries and/or profiles. Friedenthal 
et al. 2008b describe the difference between libraries and profiles as follows:

Model libraries provide constructs that can be used to describe real-
world instances represented by a model, be they blocks specifying reus-
able components or value types defining valid units and dimensions 
for block properties. Profiles, on the other hand, provide constructs that 
extend the modelling language itself; for example, stating that there 
is such a thing as a value type with units and dimensions in the first 
place.

Profiles are special types of packages that contain extension mechanisms 
called stereotypes (Note: SysML is a profile of UML). These stereotypes are 
based on one or more metaclasses in a reference metamodel, which in this 
case means that they based on existing SysML elements. For example, when 
modeling a production line it may be desirable to have a “Machine” object 
for representing the various machines in the system. This can be achieved by 
defining a stereotype called “machine” and applying it to the SysML blocks 
that represent machines. This stereotype can simply be used as a label for 
the purposes of clarity (i.e., <<machine>> in place of <<block>>) but further 
characteristics can also be manipulated. In the case of a “machine” stereo-
type properties such as capacity, feed rate or serial number could be defined 
in the stereotype. Any block to which this stereotype is applied will then 
inherit these properties and they can be populated with values specific to 
each instance. Constraints may also be added to a stereotype to specify rules 
about valid use of the newly defined properties. If a specific SysML Profile 
for the simulation modeling domain were to be specified then standard ster-
eotypes for elements such as buffers and processing stations, and specific 
methods for identifying simplifications and assumptions, could be defined. 
The availability of a profile like this would address many of the standardiza-
tion problems that the simulation modeling community face when creating/
reading conceptual models.

Model libraries have obvious advantages in terms of cutting down the 
modeling workload. By saving model elements as reusable “building blocks” 
(e.g., a description of a prioritized queue or a detailed description of how the 
material reordering process is managed), they can be used to speed up the 
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modeling process and reduce unnecessary repetition. If specific libraries for 
different domains such as supply chain analysis, electronics manufacturing 
or wafer fabrication were developed using a simulation-specific SysML pro-
file and made publicly available, the inertia associated with getting simula-
tion practitioners to use SysML could possibly be overcome. However, the 
economic benefit of developing libraries of reusable blocks may be question-
able if additional effort is required of modelers to make the model elements 
reusable. This and the potential reuse rate would need to be investigated 
further before adopting this approach.

A high degree of collaboration is necessary when collecting information 
on a large or complex system. In the case example discussed in Section 11.3.1, 
it was necessary to hold meetings with six people with different responsibili-
ties in the production facility, reflecting the localized knowledge that exists 
in such systems. The three days required to undertake and analyse these 
meetings reflects the difficulty associated with gathering knowledge when 
it is required. Attempts to maintain transferable information in process flow 
diagram format had only proven partially successful for the case company 
as they were not centrally stored and there were no process flow diagrams 
available for the assembly process steps even though they were the primary 
value adding activities in the factory. Again the difficulty with creating these 
process flow diagrams is associated with lack of collaborative supports for 
gathering the information and developing the diagrams. Many SysML tools 
already address these issues by offering multiuser features to help share the 
modeling effort. However, there are still many opportunities to take SysML 
software online and take advantage of the greater collaborative capability 
allowed by the Internet. This online collaboration would have significant 
benefits in the conceptual modeling space where often the simulation ana-
lyst is external to the company.

11.5 Conclusions

SysML is an accepted standard with a growing user base. The UML herit-
age and OMG adoption of the standard reflect the level of sophistication in 
the language while the development effort invested by practitioners and tool 
vendors alike shows the level of interest in the standard from both sides of 
the market.

SysML provides a standard that has potential to be used in DES. Such a 
standard would provide great benefit as it would provide a common lan-
guage, which has been noted to be lacking in this domain.

All of the advantages that have been put forward supporting the use of 
UML for conceptual modeling still stand and indeed most are strengthened 
by the fact that SysML has a much broader scope than the software-specific 
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UML. SysML’s ability to represent both physical and software aspects of a 
system allow the types of systems that are typically analyzed with simula-
tion to be fully described in a formal model-centric format.

Compared to the document-centric approach, which is predominately 
used in conceptual modeling today, SysML models offer a much more use-
ful format in terms of reusable blocks of information. Compartmentalizing 
information allows it to be offered to readers in more digestible quantities; 
different amounts and different sections of information can be offered to 
readers depending on the role they play in the study. Once built in appro-
priate software, a SysML model also allows for more intuitive navigation 
through the information, again aiding the communication process.

Although there may be a considerable learning period required to become 
proficient in SysML, this is not dissimilar to any programming language, 
natural language or software package. Indeed, SysML should be adopted in 
a similar fashion to any language; first understand some basic vocabulary 
and then expand upon this as and when required. The simulation packages 
already used by simulation analysts require even greater effort to learn so 
this in itself should not be a barrier to the uptake of SysML. It is therefore a 
matter of clearly conveying the benefits of using SysML for conceptual mod-
eling so that simulation analysts can evaluate the return on their investment 
of time and effort.

It is acknowledged that SysML diagrams are easier to read than to write 
and collaboration will be essential if SysML models of large manufacturing 
(or other) systems are to be developed, maintained and made available for 
use in other activities. There is scope for further research around the use of 
online collaborative tools for the creation of SysML models.

More work is needed to fully evaluate the capabilities of SysML in the 
DES domain. There is scope to utilize the facilities of profiles and libraries 
to tailor SysML to the DES domain. Since it is of the utmost importance to 
maintain standardization, this work should be undertaken in a coordinated 
fashion.
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12
Development of a Process 
Modeling Tool for Simulation

John Ryan and Cathal Heavey

12.1 Introduction

Conceptual modeling or the precoding phases of any simulation project are 
crucial to the success of such a project (Wang and Brooks 2006). The problem 
definition, requirements gathering, and conceptual model formulation pro-
cess is often a time-consuming one, as is the process of collecting detailed 
information on the operation of a system (Balci 1986). However, little sub-
stantive research on the subject has been reported in the literature (Brooks 
2006, Robinson 2004).

Hollocks (2001) recognized that such premodeling and postexperimenta-
tion phases of a simulation project together represent as much or more effort 
than the modeling section of such projects and that software support for 
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these phases of the wider simulation process would be valuable. Some of 
the particular areas of potential support highlighted by Hollocks included 
documentation, communication, and administration. Such areas are also 
discussed by Sargent (1999) in terms of model documentation and model 
validity. This lack of support for documentation in preference for rapid 
model production was further highlighted by Conwell and Enright (2000). 
This they ascribe points to the lack of development, documentation, main-
tenance and management practices for software development, which if in 
place can result in systems that can provide greater returns on investment 
and that can be used and evaluated for suitability without the need for costly 
rework. The difficulties of establishing model credibility due to the lack of 
good development practices and documentation are also discussed. Nethe 
and Stahlmann (1999) discuss the practice of developing high-level process 
models prior to the development of a simulation model. Such a method they 
feel would greatly aid in the collection of relevant information on system 
operations (i.e., data collection) and therefore reduce the effort and time 
 consumed to develop a simulation model. Such a process modeling method 
for simulation could be used as a knowledge acquisition method for simula-
tion studies. The above highlight both the importance of and lack of precod-
ing support for simulation.

This chapter is structured as follows. The next section reviews current pro-
cess modeling tools available to support simulation. This review concludes 
that current methods could be improved. Section 3 introduces a newly 
developed process modeling method that aims to overcome some of the 
weaknesses of current tools. In section 4 this new method is illustrated and 
compared with IDEF3 via a case study. Finally, the conclusions of the chapter 
are given.

12.2 Overview of Process Modeling Methods

During the initial stages of developing a simulation model, a means of pre-
senting the current system and proposed simulation (or conceptual) model is 
typically required. This may be simply documentation of system description 
with diagrams or in some cases a process modeling tool may be used. A num-
ber of researchers have documented the benefits of using process modeling 
tools to support the initial stages of a simulation project (Van Rensburg and 
Zwemstra 1995, Nethe and Stahlmann 1999, Jeong 2000, Perera and Liyanage 
2000). There are numerous process modeling tools available to aid in the 
modeling of a system. Kettinger et al. (1997) listed over a hundred in a survey 
that was not exhaustive. These tools are capable of modeling many differ-
ent aspects of a system to varying levels of detail. Some of these tools allow 
simulation of process models developed within the tool (i.e., Mayer et al. 
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1995, Scheer 1998, and INCOME Process Designer 2003), and a number have 
been used to support simulation (i.e., Van Rensburg and Zwemstra 1995 and 
Al-Ahmari and Ridgway 1999). To ascertain the level of support given by 
current process modeling tools a selective review of a number of methods/
tools was carried out (Ryan and Heavey 2006). The criteria used to conduct 
this review were as follows:

Could the method/tool capture a detailed description of the various •	
aspects of a discrete-event system for the purposes of a simulation 
project? Those being the following:

The flow of work, or change of state of a discrete-event system•	
The flow of information associated with the control of a discrete-•	
event system
The activities that are associated with the execution of the flow of •	
work and information within a discrete-event system
The resources necessary and their usage in the execution of the •	
activities associated with both work and information within a 
discrete-event system

Did the method/tool have a low modeling burden and was it there-•	
fore capable of being used and understood by nonspecialists dur-
ing the conceptual modeling process? Aspects that were felt would 
facilitate this included these:

The modeling of a discrete-event system from the perspective of •	
the user and their interactions with the system in the execution 
of activities within the system
The separation between the process modeling tool and the simu-•	
lation engine to allow for the capture, representation, and com-
munication of detailed interactions at a high level during the 
requirements gathering phase, as opposed to purely at the low-
level code stage of a project

Was the method/tool capable of modeling information in terms of •	
concepts that were meaningful to system personnel such as resources 
and activities, as opposed to abstract terms? This was with a view 
to facilitating understanding and communication during conceptual 
modeling.
The visualization capability of each method/tool was also examined •	
with a view to ascertaining their abilities to facilitate communica-
tion between a model developer and system personnel. The follow-
ing initiatives were examined in this regard:

The access to a means of elaborating graphical models to facili-•	
tate the communication of detailed information associated with 
such graphical representations
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The capabilities of hierarchically structuring a model to facilitate •	
the decomposition of complex situations into related submodels;
The graphical representation of the various tasks within a sys-•	
tem and presentation of these tasks in a time phased sequence of 
execution within a system

The review focused on methods/tools that have been used to support simu-
lation and/or exhibit characteristics desirable in a dedicated process mod-
eling tool for simulation. The methods/tools were categorized into these 
methods:

Formal Methods: These are methods that have a formal basis and there 
are numerous software implementations of these methods. Methods 
reviewed under this category were: (i) Petri Nets (Ratzer et al. 
2003); (ii) Discrete Event System Specification (DEVS) (Zeigler 1984); 
(iii) Activity Cycle Diagrams (ACD) (Tocher 1963), and (iv) Event 
Driven Process Chains (EDPC) (Tardieu et al. 1983).

Descriptive Methods: These methods have little formal basis and are 
 primarily software implementations. Methods reviewed here were: 
(i) IDEF (NIST 1993); (ii) Integrated Enterprise Modeling (IEM) 
(Mertins et al. 1997); (iii) Role Activity Diagrams (RAD) (Ould 1995); 
(iv) GRAI Method (Doumeingts 1985), and (v) UML State Charts and 
Activity Diagrams (Muller 1997).

In summary, this review concluded that Petri Nets are to a certain extent 
capable of visually representing and communicating discrete-event-system 
logic, however such Petri Net models are not capable of visually accounting 
for complex branching logic or hierarchically decomposing complex models 
into submodels and as a result become very cumbersome as system complex-
ity increases. The technique also does not account for a user’s viewpoint, 
resources, information flows, or a means of elaborating the graphical model 
in a textual manner. However the technique is capable of accurately repre-
senting state transitions and the activities associated with the execution of 
such flows.

The DEVS formalism is capable of accurately representing the various 
changes in state of a discrete-event system along with being somewhat capa-
ble of representing resources, activities, and branching within its mathemati-
cal representation. However, the formalism is not visual in nature and does 
not account for the user’s interactions with the system, information flows, or 
a user-friendly elaboration language.

ACDs are again somewhat capable of visually representing and communi-
cating certain discrete-event–system logic. It achieves this by means of mod-
eling state transitions and the activities that cause such state transitions to 
be executed. However, the technique fails to account for a user’s perspective, 
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resources, information modeling, branching logic or a means of textually 
elaborating graphical models.

EDPCs are a highly graphical process modeling technique that are capable 
of representing a discrete-event system as a series of activities. The tech-
nique is capable of representing branching logic and to a lesser extent infor-
mation interactions within the system. Drawbacks of the system however 
include its lack of a representation of the user’s perspective, state transitions, 
and resource interactions. The technique also does not have the capability 
to hierarchically decompose a model into submodels or have access to an 
associated elaboration language.

IDEF0 is a graphical modeling technique capable of representing a discrete-
event system as a series of interrelated activities. The technique is capable of 
hierarchically decomposing a model into submodels and is also to a certain 
extent capable of accounting for both information and resource interactions. 
However the technique does not account for system branching, the elabora-
tion of graphical models, state transitions, or the modeling of a user’s per-
spective. The IDEF3 process modeling technique is capable of graphically 
representing the various states through which a discrete-event system can 
transition along with the various activities associated with each change of 
state. This technique also offers a means of representing complex system 
branching logic along with a means of hierarchically decomposing a model 
into related submodels. The technique is also capable of textually represent-
ing the graphical models; however, this representation language is abstract 
in nature. This representation language also offers a means of representing 
resources associated with the graphical models. However, the technique does 
not account for information flows or modeling from a user’s perspective.

The IEM technique presents a highly visual and communicative model of 
a discrete-event system, which is capable of graphically representing state 
transitions, information, and resource elements. The technique is also capable 
of hierarchically decomposing a model into submodels along with having a 
detailed branching logic associated with it. However, the technique does not 
account for a user’s viewpoint or have an associated elaboration language.

RADs are a highly visual modeling technique that accounts for the user’s 
perspective in the development of a process model of a discrete-event sys-
tem. The technique is to a certain extent also capable of representing the 
logical branching of such activities within a model. The technique, however, 
does not have the means of representing state transitions, information flows, 
resource interactions or a means of either hierarchically decomposing, or 
textually elaborating graphical models.

The GRAI model offers a means of modeling the detailed information and 
control interactions within a discrete-event system. This information model 
is also capable of representing discrete activities and model decomposition 
along with to a lesser extent both state transitions and resources. However, 
the model does not account explicitly for the user’s perspective, branching 
logic, or an elaboration language.
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UML statecharts are a highly visual and communicative modeling 
 technique that are used represent a discrete-event system as a series of inter-
related state transitions. This technique also has a means of graphically 
 representing the logical flow of states and hierarchically decomposing a 
model into submodels. However the system does not account for information 
flows, resources, activities, and an inclusion of a user’s interaction with the 
system or a means of textually elaborating the graphical model. UML activ-
ity diagrams are designed to represent a discrete-event system as a series 
of activities linked together to show the various phases of activity within a 
discrete-event system. The technique is highly visual and communicative 
and also has to a certain extent a means of visually representing the logical 
flow of activities. However the system does not account for a user’s perspec-
tive, state transitions, information modeling, resource modeling, or a means 
of elaborating the graphical models.

Resources are a major issue in many simulation projects. Techniques such 
as IEM and EDPCs are capable of accurately representing such resources 
within a discrete-event system. To a lesser extent IDEF0, IDEF3, GRAI, RADs, 
and DEVS can represent aspects of resources within a discrete-event system. 
However techniques such as Petri Nets, ACDs, UML activity diagrams, and 
UML statecharts do not have such a means of representing such resources. 
Activities are also well represented within many techniques such as Petri 
Nets, ACDs, UML activity diagrams, RADs, GRAI, IEM, EDPCs, IDEF0, 
and IDEF3. While the DEVS technique is capable of representing activities 
to a lesser extent. Complex branching logic is well represented with tech-
niques such as UML activity diagrams, UML statecharts, EDPCs, and IDEF3 
by means of the branch types used in each. Techniques such as Petri Nets, 
DEVS, RADs, and IEM have the ability to represent such branching to a 
lesser extent. While techniques such as IDEF0, GRAI, and ACDs lack the 
capability to display such branching logic. Finally no technique examined 
apart from the IDEF3 technique was capable of presenting the user with an 
elaboration language to further explain the graphical model produced. Such 
elaboration languages are a textual means of describing complex informa-
tion and interactions within discrete-event systems that cannot be readily 
or easily represented within a visual representation alone. While the IDEF3 
technique did have this capability the elaboration language was abstract in 
nature and not easy to reason over.

From the analysis above it is concluded that while there are many pro-
cess modeling techniques and software tools available that may be used 
to support the requirements gathering phases of a simulation project, 
none of the techniques reviewed fully support the conceptual modeling 
phase of a simulation project. As a result of this review research has been 
carried out into developing a process modeling specifically tailored to 
support the conceptual modeling phase of a simulation project. The fol-
lowing design objectives were used in developing the process modeling 
method:
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The technique has to be capable of capturing a detailed description •	
of a discrete-event system.
The technique should have a low modeling burden and therefore be •	
capable of being used by nonspecialists.
The technique should present modeling information at a high •	
semantic level so that personnel can rationalize with it.
The technique should have good visualization capabilities.•	
The technique should support project teamwork.•	

The resulting process modeling tool is called Simulation Activity Diagrams 
(SAD) and is briefly described in the next section.

12.3 Simulation Activity Diagrams (SAD)

The SAD technique presented here endeavors to be a highly visual process 
modeling technique to aid in the process of communication between the 
model developer and system users involved in the process of developing a 
simulation model, while still aiding the model developer in the gathering of 
data for the creation of the model. As well as supporting the requirements 
gathering phase of a simulation project, another important function of the 
technique proposed here is to act as a knowledge repository. A brief over-
view of SAD is now presented.

12.3.1 SAD Action l ist

A discrete-event system consists of a series of discrete events, the outcomes of 
which when grouped together ultimately decide the progress of a particular 
system. In a simulation engine these events are stored in an event list and exe-
cuted in order of their time of occurrence. To endeavor to graphically represent 
this scenario the SAD technique uses the concept of an activity, whereby an 
activity is any event that causes the change of state of a discrete-event system. 
Such aforementioned simulation events, however, can often be amalgamations 
of numerous real-world events in an attempt to lessen programming burden. 
This can lead to difficulties among personnel not intimately involved in the 
model coding understanding the simulation model. In an attempt to allow 
the model developer to account for such amalgamations of events graphically 
within the SAD technique each individual activity within a SAD diagram 
can be composed of a series of actions as shown in Figure 12.1.

The system is in state 1. Before it can transition to state 2, all actions, 1, 2 
and 3 must be executed. In this way, an individual activity is considered a 
separate mini event list or action list within the SAD model. These actions 
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are executed in a time ordered sequence from top to bottom and from left to 
right ensuring that each criterion is satisfied. Only when each action has been 
executed, can the full activity be executed and the system transition success-
fully to state 2. Taking this approach a SAD becomes a graphical representa-
tion of the various events in a simulation model. Each event is represented 
in a SAD by an activity. This activity is then further graphically represented 
by an action list. This will be further developed in the following section by 
the introduction of a series of modeling primitives that may be used in the 
detailing of such an activity.

12.3.2 SAD Modeling Primitives

Within most systems, actions such as those in Figure 12.1 are rarely executed 
without a number of other types of resources being used. These resources 
are briefly introduced below:

Primary resource element: A primary resource element represents any 
resource within a discrete-event system that facilitates the transfor-
mation of a product, physical or virtual, from one state of transition 
to another.

Queue resource element: A queue modeling element represents any phase 
of a discrete-event system where a product, virtual or physical, is not 
in an active state of transformation within the system.

Entity element: An entity element represents any product, physical or 
virtual, that is transformed as the result of transitioning through a 
discrete-event system.

Entity state element: An entity state represents any of the various states 
that a physical object or component explicitly represented within a 
system transitions through during physical transformation.

Informational element: An informational element represents any infor-
mation that is used in the control or operation of the process of tran-
sition by a product through a discrete-event system.

Action 1 Action 3Action 2

Activity 1

Event 1 Event 2

Fig ur e 12.1
SAD actions.
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Informational state element: An informational state represents any of the 
various states that information used in the operation or control of a 
discrete-event system transitions through during the support of the 
operation of the physical transformation.

Auxiliary resource element: An auxiliary resource represents any resource 
used in the support of a Primary Resource. For example, within a 
system being simulated a primary resource, such as a machine may 
be used in the transformation of an entity from state A to state B. 
However this primary resource may require an operator and a num-
ber of other tools that an operator may use to operate the machine, 
such auxiliary resources can be either of two varieties, namely an 
actor auxiliary resource or a supporter auxiliary resource.

Actor auxiliary resource: An actor auxiliary resource represents any 
auxiliary resource used in the direct support of the execution of an 
action or actions within the process of transitioning a system from 
one state to another.

Supporter auxiliary resource: A supporter auxiliary resource represents 
any auxiliary resource used in the direct support of an actor aux-
iliary resource in the execution of an action or actions within the 
process of transitioning a system from one state to another.

Branching Elements: Most discrete-event systems are complex in 
nature and are rarely, if ever, linear. To account for the represen-
tation of such situations the SAD technique uses the following 
branching elements. There are two general types of branching 
elements, fan in and fan out. Both of these branch types can be 
further subdivided into conjunctive and disjunctive branch ele-
ments. Where conjunctive branch elements represent the branch-
ing and joining of multiple parallel subsystems and disjunctive 
branch elements represent the branching and joining of multiple 
alternative subsystems. A logical, “AND,” branch element is used 
to represent conjunctive branching. While there are two types of 
disjunctive branch elements, inclusive and exclusive, represented 
by an “OR” and an “XOR” respectively. Finally, the conjunctive 
branch and inclusive disjunctive branch elements may be either 
synchronous or asynchronous. Where a synchronous branch ele-
ment signifies that all elements either preceding or proceeding 
the branch element depending on its type, fan in or fan out, must 
either begin or end simultaneously. Neither an exclusive disjunc-
tive branch element or any asynchronous branch element require 
such simultaneous initiation or termination and are therefore the 
more commonly used.

Therefore a fan out, “AND” branch in a model means that when the execu-
tion of the model reaches that point in the process represented by such a 
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branch, all the elements that are immediate successors of the branch will 
be executed. If a synchronous, “AND(S)” branch is used then the execution 
of that branch will mean that all of the immediate successor elements must 
begin execution simultaneously.

Similarly in a model where a fan in, “AND,” branch is executed all ele-
ments that immediately precede that branch will have been executed. If a 
synchronous, “AND(S),” branch is used, then, for that part of the model to 
execute all the elements preceding must all end simultaneously. Thus, an 
execution of the left-hand model in Figure 12.2 will consist of the execution 
of element, A, followed by elements B and C. Similarly the execution of the 
right-hand model in Figure 12.2 will result in the execution of element, C, 
preceded by the execution of elements A and B; if a synchronous, “AND(S),” 
branch is used, then for there to be an execution of the element, C, both ele-
ments, A and B must end simultaneously. For example the left-hand model 
of Figure 12.2 could represent a disassembly operation, element A could be 
broken down into two constituent parts, B and C. Similarly the right-hand 
model could represent an assembly where elements A and B are combined 
to create element C.

A fan out inclusive, “OR,” branch in a model indicates that, in an execu-
tion of that branch there will be an execution of at least one of the elements 
connected to the branch to the right. Similarly, a fan out exclusive, “XOR” 
branch in a model indicates that, in an execution of that branch, there will 
be an instance of exactly one of the elements connected to the branch to the 
right, for example an element will either pass or fail inspection, it cannot do 
both. If a synchronous inclusive, “OR(S)” branch is used, then all elements 
that are executed must start simultaneously. This does not apply to exclu-
sive, “XOR” branches, since there can only be one element executed in an 
“XOR” execution. Similarly with fan in inclusive “OR” branch, there will be 
at least one element executed to the left of the branch. If a synchronous inclu-
sive “OR(S)” branch is used, then, those elements that are executed, if there 
is more than one, must all end simultaneously. Hence, an execution of the 
model to the left in Figure 12.3 consists of an instance of the element A pro-
ceeded by an instance of either B or C, or both. If the models in Figure 12.3 
used “XOR” branches, then an execution of the first model could not include 
an instance in which the execution of both B and C occur while an execution 

B

AND

C

A

A

AND

B

C

Fig ur e 12.2
AND branches.
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of the second model could not include an instance where an execution of 
both A and B occur.

Link Types: Links are the glue that connects the various elements of a 
SAD model together to form complete processes. Within the SAD 
technique there are three link types introduced known as entity 
links, information links, and activity links. Arrows on each link 
denote the direction of the flow of each representative link. The sym-
bols that represent each type are shown in Figure 12.4.

SAD Frame Element: The SAD frame element provides a mechanism for 
the hierarchical structuring of detailed interactions within a dis-
crete-event system into their component elements, while also show-
ing how such elements interact within the overall discrete-event 
system.

12.3.3 SAD Model Structure

A SAD model is executed in time sequenced ordering from left to right 
and from the center auxiliary resource area to the extremities of the model 
and is structured as shown in Figure 12.5. At the center of each model is 
the actor/supporter auxiliary resources. These are the auxiliary resources 
that are used in the supporting of any discrete processes being executed 
in either the physical or informational systems within any SAD model. 
The distinction between an actor and supporter type of auxiliary resource 
within this grouping of auxiliary resources allows for the separation 

A

B

C

A

B

COROR

Fig ur e 12.3
OR branches.

Entity link

Activity link

Information link

Fig ur e 12.4
SAD link types.
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between an operator resource and other auxiliary resources that may be 
modeled within a discrete-event system. This can be of advantage to com-
munication during the requirements gathering phases of a simulation proj-
ect as often the persons with whom the simulation model developer will 
be communicating will be actors within the process. In this way, a SAD 
model will be developed from the perspective of the persons interacting 
with the system. The interconnecting areas between both models contain 
the actions to be executed.

Fig ur e 12.5
A simple SAD example.
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A series of these actions and the associated interactions with other SAD 
modeling elements make up an action list. A series of these activities in turn 
make up a sequence of transition for physical or information entity.

12.3.4 elaboration of SAD Models

Thus far, the modeling elements used to develop a SAD model have been 
introduced to provide a means of visually modeling discrete-event systems. 
However, such graphical models are capable of only representing a certain 
amount of detailed information and knowledge. Often, complex discrete-
event systems contain detailed information and knowledge related to process 
interactions that cannot be captured well by such graphical representations. 
To provide a means of making such information available to a model user 
the SAD technique also makes use of an elaboration language with which 
each individual SAD diagram can be described in greater detail. This struc-
tured language makes use of a number of different reserved words to allow 
the description of SADs, see Table 12.1.

12.4 Evaluation of SAD: Case Study

A prototype software application called the Process Modeling Software 
(PMS) has been developed using Microsoft Visual C++ to implement the SAD 
methodology. The objective in developing PMS was to allow further evalua-
tion, beyond evaluation using paper-based models. SAD was evaluated using 
the PMS software in a number of different production scenarios including 
a batch flow-shop type production system where the operators have a lot of 
decision making power in relation to the advancement of the system and the 
types of parts that are produced at a given time. This scenario is presented 
in the next section to further illustrate the SAD approach. In an effort to 

TAble 12.1

Structured Language

Keyword Description

USES The supporter resource may at times make use of auxiliary 
resources to execute an action or actions, in other words a 
supporter USES auxiliary resources 

TO Details the action or actions that are executed by use of an 
auxiliary resource by a supporter resource 

AT Specifies the Locations where the action or actions are 
executed 

TRANSITIONS 
TO

Specifies the change of state of entity or information from 
one state to another 
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facilitate comparison the SAD description is first given and then is followed 
by an IDEF3 model. The case study ends with a discussion comparing SAD 
with IDEF3 and other modeling approaches currently available.

12.4.1 System Description

The manufacturing facility modeled produces mining rods and can be 
classified as a batch flow-shop, consisting of four major work regions. The 
first region consists of precarburising operations. The second work region 
relates to the carburising or induction-hardening phase of the production 
process. The third work region encompasses the postcarburising opera-
tions and finishing operations and the final work region represents the 
final inspection of the product before dispatch to the relevant customer. 
The second work area is quiet complex in terms of the decisions made by 
operators and the amount of control vested in them. It is on modeling this 
operator control and decision making process that this case study descrip-
tion concentrates on.

In work region 2 (carburising) parts arrive into the furnace area and wait 
until all operations such as roping, application of anticarburising paint and 
stamping of the batch number have been performed. Rods that require car-
burising are staged in the carburising area, where they are split up into 
separate holding areas based on their carburising setting. There are 12 car-
burising settings with the carburising times varying from 4.5 hours to 10.5 
hours. Within each of these carburising setting holding areas the rods are 
separated according to length. Before the rods are carburised certain prepa-
ratory operations are performed, e.g., inserting a carburising rope. To enter 
the furnace the rods are manually loaded (using a crane if heavy) onto a 
carburising jig. The carburising jig consists of a column, made up of tiers 
of rods of which there are a maximum of four on each jig. Each tier on the 
jig consists of a six-sectioned “spider.” Placed within each section of this 
spider is a honeycomb tray, which allows the rods to be hung vertically in 
each section. The spider, honeycomb trays, and rods contained therein are 
collectively known as a “tier,” a schematic of such a carburising jig is shown 
in Figure 12.6.

The length of the rods being carburised determines the number of tiers 
on the jig. For very long rods only one tier is usable, for very short rods four 
tiers can be used. The diameter and shape of the rods determine the type of 
honeycomb tray that is used. Each tier has six trays containing honeycombs 
into which rods are slotted. There are four types of trays:

Type A: Can hold a maximum of 16 rods•	
Type B: Can hold a maximum of 12 rods•	
Type C: Can hold a maximum of nine rods•	
Type D: Can hold a maximum of three rods•	
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There are two furnace operators who are required to carry out the following 
prioritized operations:

Load/unload the furnace (Priority 1)•	
Build/dismantle a jig (Priority 2)•	
Load/unload the air cooling tower (Priority 3)•	
Pre-jig building operations (Priority 4)•	

Pre-jig building operations consist of inserting rayon ropes, applying anti-
carburising paint, and stamping the batch number on parts. Unloading the 
furnace occupies the operators for approximately 30 minutes. This task is 
assigned the highest priority in the model and therefore, whenever it occurs 
the operators stop working on all other tasks and are pulled to the furnace. 
Building or dismantling of jigs is given the next highest priority. All other 
tasks have very low priority and cannot be started unless the  aforementioned 
operations are not possible. Operators will attempt to build a jig before 
 dismantling one so as to ensure that a jig will be available when the furnace 
requires one. However, jigs are a limited resource in that there are only three 
jigs in the furnace area. Also, jig building may not be complete when the 

Tier

Tray

Honeycomb

Tiers

Fig ur e 12.6
Schematic of a carburising jig.
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furnace next becomes empty. Finally, after the jig containing the rods is car-
burised, it must be transferred immediately to the cooling tower to be cooled 
under controlled conditions to ensure the required hardness is achieved by 
the carburising process. After the cooling tower the operators allow the jig to 
air cool until the rods are cool enough to be unloaded. The unloading opera-
tion is a manual operation, where the parts are unloaded and passed to the 
next work region.

12.4.2 SAD Model

The following section presents a SAD model developed to communicate the 
various interactions between the operators and the carburising part of the 
manufacturing system. Such interactions require the model developer to gather 
and communicate detailed information on a system. The SAD model devel-
oped using the PMS software for the carburising area is shown in Figure 12.7.

Each SAD diagram starts from the actor/supporter auxiliary resources sec-
tion, in this way each SAD is developed and executed from the perspective of 
those using the system or interacting with it. In this case, either one or the other 
or both (the “OR” branch) of the operators can do either (the “XOR” branch) the 
“Rope & stamp parts” action or else they can either with or without a “Crane” 
supporter auxiliary resource (the next “OR” branch) can carry out any of each 
of the following individual actions, individually (the “XOR” branch), “Build 
a tray,” “Build a tier.” “Build a jig,” “Move to jig waiting area,” “Collect jig,” 
“Load jig,” “Carburise,” “Unload jig,” “Load jig,” “Cool,” “Temper,” “Unload 
jig,” “Move jig to holding area,” “Dismantle jig,” denoted by the yellow actions. 
Some of these actions can be done either separately or in conjunction with each 
other. For example either build a tray or a tier or an entire jig or possibly all of 
these or any combinations, denoted by the “OR” branch above the “Build a 
tray,” “Build a tier,” “Build a jig” actions. Also a number of tasks are always car-
ried out in sequence with each other, for example “Build a jig” and “move jig to 
waiting area” are both carried out in sequence, denoted by the “AND” branch 
above these tasks. A number of “AND” branches are also located between the 
actions and the various queues and primary resources, these branches are 
used to indicate where each of the individual actions are executed, for example 
the actions “Rope & stamp parts,” “Build a tray,” “Build a tier,” “Build a jig” 
are executed at the “jig holding area” queue element in this SAD model.

The physical system (located at the lower region of the SAD model) shows 
the change of state of the parts (entities) within the system having passed 
fully through the Furnace area, the parts denoted by the green entity state 
objects change from a “Pre anneal part” to an “Annealed part.”

Coupled with this visual model the PMS software allows for the elabora-
tion of the graphical models by means of the structured elaboration lan-
guage, which is generated from the visual model. The elaboration facility 
of the PMS tool is shown in Figure 12.8. The full text of the elaboration is 
contained in Table 12.2. From this table it can be seen that information and 
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TAble 12.2
Elaboration of the SAD Model

Elaboration of the Activity

Operator 1
OR
Operator 2
EITHER 
The operations are outlined here in the sequence of execution to produce a part, however 
priority rules apply to the sequence of operations within the area and these priority rules are 
contained in an attached document (Furnace-operation- priorities.doc)

Rope & stamp parts
AT

Jig holding area
OR
  OR
  USES
  Crane
The number of operators and need for a crane is dependant on the size of parts being placed 
on the tray/tier or jig. Details are contained in the following four attached documents. 

(Load-requirements-hex-rods.xls) 
(Load-requirements-round-rods.xls) 
(Unload-requirements-hex-rods.xls) 
(Unload-requirements-round-rods.xls)

TO
EITHER
Build a tray
There are four types of tray the details of which are contained in the attached document 
(tray-types.xls)

OR
Build a tier
  A tier consists of 6 trays
OR
Build a jig
A jig is made up of a maximum of four tiers and each tier is made up of a number of trays. The 
number of tiers and trays used and the number of parts is dependant on the size and weight 
of parts with maximum limits on each. The details for this are contained within the following 
attached documents.

(Max-Furnace-utilisation.xls)
(Round-rod-weights.xls)
(Hex-Rod-weights.xls)

While fully built jigs are preferred, parts in the holding section for longer than 8 hours may be 
used on partially built jigs.

(Continued)
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TAble 12.2  (Continued)
Elaboration of the SAD Model

Elaboration of the Activity

AT
Jig holding area
AND
Move jig to waiting area
AT
Jig waiting area
Or
Collect jig 
AT
Jig waiting area
AND
Load jig
AND
Carburise
AT
Furnace
The furnace cycle times vary with the details contained in the attached document 
(Furnace-cycle-times.xls)

OR
Unload jig
AT 
Furnace
AND
Load jig
AND
EITHER
Cool
OR
Temper
AT
Cooling tower
OR
Unload jig
AT
Cooling tower

AND
Move jig to holding area
AT
Jig holding area
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knowledge not suited to graphical representation such as priority rules or 
the usage rules for certain resources such as cranes, etc. can be easily linked 
to the visual model, explained, and accessed by means of the elaboration 
language.

12.4.3 iDeF3 Model

The IDEF3 Process Description Method provides a mechanism for collect-
ing and documenting processes. IDEF3 captures precedence and causality 
relations between situations and events in a form natural to domain experts, 
by providing a structured method for expressing knowledge about how a 
system, process, or organization works. The resulting IDEF3 descriptions 
provide a structured knowledge base for constructing analytical and design 
models. These descriptions capture information about what a system actu-
ally does or will do, and also provide for the organization and expression of 
different user views of the system.

There are two IDEF3 description modes, process flow and object state tran-
sition network. A process flow description captures knowledge of how things 
work in an organization, e.g., the description of what happens to a part as it 
flows through a sequence of manufacturing processes. The object state tran-
sition network description summarizes the allowable transitions an object 
may undergo throughout a particular process. Both the process flow descrip-
tion and object state transition description contain units of information that 
make up the system description. In Figure 12.9 the IDEF3 model for the car-
burising area is shown. At the highest level in this model the carburise area 
is represented by a unit of behavior (UOB) named “CARB1 Carburise.” UOBs 
can be used to represent a system, subsystem, or individual tasks within a 
model depending on the context and level at which they are used.

TAble 12.2  (Continued)
Elaboration of the SAD Model

Elaboration of the Activity

OR 
Dismantle jig 
AT
Jig holding area
AND
THEN
Pre anneal part entity state
TRANSITIONS TO
Annealed part entity state
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The carburise area has a submodel or more-detailed description attached 
to further describe it. This is shown by means of the black background 
behind the aforementioned UOB. The submodel shows that within the car-
burise operation there are “preparatory operations” that are only conducted 
on some of the parts passing through this function, from here all parts both 
with and without preparatory operations proceed to the “Load carburising 
jig” operation and then in turn to the “Carburise,” “Cooling & Tempering,” 
and “Unload carburising jig” operations. Two of these final UOBs again 
have submodels associated with them. The “Carburise” UOB/operation 
has a submodel showing four carburising settings of which each part must 
pass though only one. The final submodel associated with the “Cooling & 
Tempering” UOB shows that all parts passing through this UOB must pass 
through a “Cool” operation and some parts will pass through a “Temper” 
operation. The IDEF3 process description developed allows for the capture, 
representation, and communication of the various states through which 
the system in question can transition. However, the information associated 
with the control of such systems and the use of resources are not graphically 
represented within the technique. This was especially pertinent in the case 
study presented as much of the model complexity emanated from the com-
plex operator decision making processes embedded within the process as 
shown within the SAD model.

12.4.4  Differentiation of the SAD Technique from 
Currently Available Techniques

The SAD technique that has been presented in this chapter has been devel-
oped specifically to support the requirements gathering phases and con-
ceptual model development within a simulation project. In facilitating this 
requirement the technique represents both what a discrete process is and 
likewise, how a simulation model represents such a process. As highlighted 
in this chapter there are various process modeling techniques available to 
a simulation model developer that can be used to aid in these precoding 
phases. The SAD technique has adopted certain aspects of a number of these 
techniques, which are outlined briefly below:

The ACD and Petri Net approach of  modeling a system as alternat-•	
ing phases of activity and waiting is represented within the SAD 
technique by means of the introduction of primary resource and 
queue elements.
Two aspects of the IDEF3 technique are adopted within SADs those •	
being the branching elements and hierarchical structuring of a 
 process model.
The EDPC style of modeling a  discrete-event system as a series of •	
events forms the basis of the  concept of a SAD action list.
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The RAD viewpoint of placing a role or the person or persons •	
charged with a task or series of tasks centrally within the model is 
implemented by means of the subdivision of auxiliary resources into 
actor and supporter resources with the actor resource capable of rep-
resenting a person’s role within a SAD.

While such similarities exist within the SAD technique, the overall model-
ing approach is radically different. The SAD technique endeavors to model 
complex interactions such as those that take place within an actual detailed 
simulation model of a real system. Again the SAD technique is designed to 
fulfill the design objectives outlined in Section 1 of this chapter. Each of these 
requirements are represented within the SAD technique. Both the physical 
and informational flows within a discrete-event system are modeled at either 
extremity of a SAD model as shown in Figure 12.5. Also modeled are the 
resources used in the execution of the various activities associated with the 
transitioning of both the physical and informational models through their 
various discrete states, again represented in Figure 12.5. In achieving these 
goals, the technique uses the various SAD modeling primitives to represent 
the various events that are listed in a simulation event list. To also represent 
more complex interactions, the SAD technique introduces the concept of an 
action list, which is used to represent detailed actions that collectively can 
make up any event within a simulation event list. Such a modeling approach 
allows for the modeling of a modern discrete-event system and in turn a 
simulation model of the same. Finally the use of a structured text-based 
elaboration within the SAD technique allows for the removal of any ambi-
guities that may arise within a complex model. Such an approach increases 
the user’s access to the information and knowledge that would otherwise be 
lost in detailed simulation code. As a result of these modeling approaches 
the SAD technique uses a set of high-level modeling primitives that are capa-
ble of representing complex discrete-event systems. The modeling technique 
places a low modeling burden on the model developer while also promoting 
the capture, representation and communication of detailed information in a 
user-friendly manner for models users.

12.4.5 Discussion

The SAD technique while not yet supplying a full and definitive support tool 
for the requirements gathering phases of a simulation project does it is felt go 
some way toward acting as an initial solution space.

In its current guise the SAD technique endeavors to model complex inter-
actions such as those that take place within an actual detailed simulation 
model of a real system. To achieve this the modeling method uses the vari-
ous SAD modeling primitives to represent the events in a simulation model. 
To also represent more complex interactions the SAD method introduces the 
concept of an action list, which is used to represent detailed actions that 
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collectively can make up any event within a simulation model. The SAD 
technique also allows for the modeling of both a physical and informational 
system that may make up a discrete-event system along with interactions 
between both (Ryan and Heavey 2006).

Each SAD diagram starts from the actor/supporter resources section, in 
this way each SAD is developed and executed from the perspective of those 
using the system or interacting with it. In this case either one or the other or 
both (the “OR” branch) of the operators can do either (the “XOR” branch) the 
“rope & stamp parts” action or else they can either with or without a “Crane” 
supporter auxiliary resource (the next “OR” branch) can carry out any of each 
of the following individual actions, individually ( the “XOR” branch), “Build 
a tray,” “Build a tier,” “Build a jig,” “Move to jig waiting area,” “Collect jig,” 
“Load jig,” ‘Carburise,” “Unload jig,” “Load jig,” “Cool,” “Temper,” “Unload 
jig,” “Move jig to holding area,” “Dismantle jig,” denoted by the yellow 
actions. Some of these actions can be done either separately or in conjunction 
with each other. For example either build a tray or a tier or an entire jig or 
possibly all of these or any combinations, denoted by the “OR” branch above 
the ‘Build a tray,” “Build a tier,” “Build a jig” actions. Also a number of tasks 
are always carried out in sequence with each other, for example “Build a jig” 
and “Move jig to waiting area” are both carried out in sequence, denoted by 
the “AND” branch above these tasks. A number of “AND” branches are also 
located between the actions and the various queues and primary resources, 
these branches are used to indicate where each of the individual actions are 
executed, for example the actions “Rope & stamp parts,” “Build a tray,” “Build 
a tier,” “Build a jig” are executed at the “Jig holding area” queue element in 
this SAD model. The physical system (located at the lower region of the SAD 
model) shows the change of state of the parts (entities) within the system hav-
ing passed fully through the Furnace area, the parts denoted by the green 
entity state objects change from a “Pre anneal part” to an “Annealed part.”

The SAD technique is not a definitive solution and currently needs fur-
ther refinement, validation, and development. A number of issues are still 
in need of addressing. These include the incorporation of multiple model-
ing views, this would allow a model developer to initially model the system 
requirements “as is” model and from this develop a second system view or 
conceptual model. The facilitation of a process whereby both models could 
be developed in the same format and viewed simultaneously would it is felt 
further enhance communication and understanding. The implementation of 
a step through facility would also it is felt be advantageous. It is also felt that 
there is a need for the development of further techniques to support a simu-
lation model developer in these precoding phases of a simulation project. It is 
hoped that further research will be carried out in this area with a view to the 
development of such techniques. The advantages that such techniques may 
offer while being difficult to accurately predict may include a number of the 
following. The development of detailed, valid and visual process models of 
complex discrete-event systems prior to the coding of simulation models may 
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save time and ultimately money in the development of simulation  models. 
The number of project failures could be reduced as a result of access to cor-
rect information and the development of valid and understandable mod-
els earlier in a simulation project. Such models should also facilitate better 
understanding of the process of simulation among non-simulation experts. 
This communication should allow for the reduction in the time taken to com-
plete simulation projects, as model developers should be able to retrieve the 
necessary information for the project at an earlier stage in the project life 
cycle. The information gathered should also be more accurate and focused 
in relation to the problem areas being examined thus reducing project itera-
tions at a later stage or in more extreme cases project failures. Graphical and 
accurate models of a problem area may even negate the necessity of simula-
tion model development in certain cases as a solution may become apparent 
through the initial process modeling phase of a project.

12.5 Conclusions

The requirements gathering phase of a simulation project is important in 
relation to the overall success of a simulation project. This chapter high-
lights the fact that there is inadequate support currently available for this 
task. While numerous process modeling techniques are available and sev-
eral have been used to support the requirements gathering of a simulation 
project, the chapter argues that the techniques available do not provide 
adequate support. The chapter presents an overview of a process model-
ing technique, SAD, developed to endeavor to overcome some of the cur-
rent shortfalls highlighted. The SAD technique endeavors to model complex 
interactions such as those that take place within an actual detailed simula-
tion model of a real system. To achieve this the modeling method uses the 
various SAD modeling primitives to represent the events in a simulation 
model. The SAD method has been evaluated on five case studies. The par-
tial results of one case study (a batch flow line) was presented and using 
this case study a comparison with IDEF3 was made. It is important to note 
that SAD is not being presented as a “final” solution but results of work-in-
progress research.
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13
Methods for Conceptual 
Model Representation

Stephan Onggo

13.1 Introduction

Simulation conceptual model (or conceptual model, for brevity) represen-
tation is important in a simulation project because it is used as a tool for 
 communication about conceptual models between stakeholders (simulation 
analysts, clients, and domain experts). There is a point in the simulation 
project when the conceptual modeling process happens inside the individual 
stakeholder’s mind. This “thinking” process includes reflection on how to 
structure the problem and how the simulation model should be designed to 
help decision makers solve the problem at hand, subject to certain  constraints. 
At some point in the simulation project, the conceptual model needs to be 
communicated to other stakeholders. Hence, the role of conceptual model 
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representation is crucial. Moreover, different stakeholders may have differ-
ent views on the system; their reasons may include different levels of under-
standing of the system, prior experience, and personal objectives. Nance 
(1994) refers to conceptual model representation for this purpose as the com-
municative model. When communication involves different types of stakehold-
ers, a standard representation that can be understood by all stakeholders is 
essential. The fact that communication between stakeholders is important for 
the success of a simulation project (Robinson and Pidd 1998) makes the need 
for good conceptual model representation become even more essential.

The main challenge in designing conceptual model representation is to 
devise a representation that can be understood by all stakeholders and yet 
that is expressive enough to handle the varying levels of complexity in the 
conceptual model.* To complicate matters further, there is no single accepted 
definition of what a conceptual model is (see Chapter 1) as what is to be 
represented will surely affect its representation. Given the different defini-
tions for a conceptual model, it is not surprising to see that a wide variety of 
conceptual model representations have been proposed. 

One of the surveys conducted by Wang and Brooks (2007) listed the popu-
larity of a number of methods for conceptual model representation. They are, 
in order of popularity, textual representations (e.g., list of assumptions and 
simplifications, component list and text description), process flow diagram, 
logic diagram (or flowchart), activity cycle diagram (ACD), and unified mod-
eling language (UML). We can group these representation methods into three 
categories: textual representation, pictorial representation, and multifaceted 
representation. The objective of this chapter is to discuss the three methods 
for conceptual model representation and issues related to their use in prac-
tice. In the examples, we will demonstrate how the methods are applied to 
represent components of a conceptual model based on Robinson’s definition. 
The same principle can be applied to other conceptual model definitions.

Robinson (2008) categorizes the components of a conceptual model into 
 problem-domain components and model-domain components (see also  Chapter 1). 
The problem-domain components are used as a means of communication 
mainly between clients/domain experts and simulation analysts, between 
 clients, or between domain experts. These components include objec-
tives, inputs, outputs, contents (scope/structure, level of detail, assumptions 
and simplifications), and data requirement. These components define parts of 
the system that are important for the objectives at hand. These components are 
independent of any modeling technique that is going to be used. At this stage, 
we need to decide whether simulation is the right tool to model the system.

Assuming that we have decided that simulation is the best option, we need 
to specify the model-domain components. At this stage, we need to decide 
the most suitable paradigms such as: discrete-event simulation, system 

* Simulation analysts often deal with clients and domain experts who have little knowledge 
about simulation.
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dynamics, and agent-based simulation. The choice between the different 
paradigms depends on the objective of the simulation project. Discrete-event 
simulation is suitable when it is necessary to track entities from their arrival 
in the system until they leave it (or until the simulation is completed). The 
results from individual entities are aggregated in the simulation outputs. 
System dynamics is suitable when the population of entities and the rates 
of entities moving from one place to another are more important than the 
individual entities. System dynamics also provides a way to explore complex 
feedback systems and it enables us to analyze the mutual interactions among 
entities over time. Agent-based simulation is particularly useful when the 
entities are adaptive, have the ability to learn, or can change their behav-
iors. Agent-based simulation is also useful when the behaviors of entities are 
affected by their spatial locations and the structure of their communication 
networks. 

Each simulation-modeling paradigm views the system of interest differ-
ently. Discrete-event simulation sees a system as a collection of events, enti-
ties, resources, queues, activities, and processes. System dynamics views a 
system as a collection of stocks, flows, and delays. From an agent-based sim-
ulation perspective, a system is formed by a collection of agents and their 
 environment. The communication at this stage, i.e., the development of a 
simulation model based on one of the paradigms, happens mainly between 
simulation  analysts. The output of this stage is a simulation model that is inde-
pendent of any software implementation.* The components of the simulation 
model are referred to as the model-domain components because they depend 
on the modeling paradigm used in the development process. Consistent with 
the theme of the book, this chapter focuses on the conceptual model represen-
tation in the discrete-event simulation. The examples given in this chapter are 
based on the District General Hospital Performance Simulation (DGHPSim) 
project to demonstrate how the methods discussed in this chapter could be 
applied in a real simulation project. DGHPSim is a collaborative research proj-
ect that involves three British universities. The project aims to develop generic 
simulation models of entire acute hospitals so as to understand how hospital 
performance can be improved (Gunal and Pidd, 2009).

The remainder of this chapter is organized as follows. This chapter 
divides conceptual model representation methods into three categories: tex-
tual,  pictorial, and multifaceted. Section 2 discusses the textual representa-
tion. Section 3 focuses on the most widely used pictorial representation in 
 simulation, i.e., diagrams. Section 4 discusses the multifaceted representa-
tion. Finally, concluding remarks are made in Section 5. 

* This may not be true in a simulation project where the requirement dictates the use of a spe-
cific implementation-dependent model representation (for reasons such as the familiarity to 
the simulation software). See Chapter 1 for the discussion on the importance of the software 
independency.
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13.2 Textual Representation

As mentioned earlier, at some stage in the simulation project, a conceptual 
model needs to be communicated to other people. The communication can 
be done by passing the information verbally or via texts. In this chapter, we 
are more interested in written communication. A written document describ-
ing a conceptual model can become an important part of the simulation 
project. For example, the document can be used in any form of electronic 
communication and can even be used as part of the contract for the simula-
tion project. The main objectives of the textual representation are to describe 
the content of each conceptual model component and to elicit visual imagery 
for the structure of the conceptual model components using narrative texts. 
The following excerpt shows how the conceptual model of a hospital simula-
tion project is represented using narrative texts. 

The objective of this project is to improve overall hospital performance. 
The performance is measured based on the waiting times of patients at 
various departments at the hospital. The key departments included in 
the model are: Accident & Emergency (A&E), outpatients and in-patients. 
Patients arrive in the system through A&E and Outpatients. Depending 
on the condition, a patient can be admitted to hospital (in-patient) or 
discharged.

The excerpt describes a number of components in a conceptual model, 
such as: the objective, the output of the model, the scope of the model, and 
the flow of patients in the model. The main advantage of textual representa-
tion is its flexibility. Simulation analysts can write the description of a model 
in various ways and in different styles, for example, the previous excerpt 
could have been written in a bullet-point format or in tabular form. Textual 
representation can be done quickly, especially for some conceptual model 
components such as assumptions (and more naturally, perhaps). Most soft-
ware that supports simulation modeling provides a facility for text annota-
tions so that analysts can easily provide descriptions of the model and any 
part of it. This might explain why textual representation is very popular for 
documenting the assumptions in the survey carried out by Wang and Brook 
(2007). Robinson (2004, chap. 6, appendix 1, appendix 2) shows examples of 
how to specify conceptual model components using textual representation.

Textual representation is not without its disadvantages. First, the flexibil-
ity of textual representation may lead to an ambiguous description of the 
simulation model. As in any types of representation, the challenge here is 
to ensure that the mental model encoded in the text is decoded correctly 
by the target recipients. Effective textual representation should pay atten-
tion to the structure and content of the text and the assumptions about the 
target recipients (in this case, the stakeholders in a simulation project). Good 
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organization of the text (sections, subsections, bullet-point lists, succinct 
description, etc.) may reduce ambiguity in the description. It may be nec-
essary to develop a common understanding of a set of keywords (such as: 
objective, model, assumptions, etc.) among the stakeholders before the con-
ceptual model is discussed. Another disadvantage of textual representation 
is that the correctness of the conceptual model cannot be verified elegantly 
using mathematical techniques. However, the conceptual model can still be 
validated using a more subjective validation technique such as the use of 
domain experts’ opinions (see Chapter 15 for various validation methods 
in conceptual modeling). Finally, and rather obviously, communication can 
work only if all stakeholders understand the language used in the texts.

13.3 Pictorial Representation

The next type of conceptual model representation is pictorial representation 
where the conceptual model is communicated through pictures. Research in 
cognitive science has shown that a pictorial representation is very  effective 
(for example, Larkin and Simon 1987). Unlike textual representation that 
presents information sequentially, pictorial representation can show the 
information in two dimensions, which allows nonsequential flows to be 
 represented more effectively. In simulation, diagrams are the most widely 
used pictorial representation for conceptual models. A diagram is a special 
type of pictorial representation that represents information using shapes/
symbols that are connected by links (such as arrows and lines). The use of 
diagrams in simulation modeling has increased, especially after graphical 
workstations became more affordable. Pooley (1991) conducted one of the 
earliest surveys on the use of diagrams in simulation modeling. Recently, 
Wang and Brooks (2007) conducted another survey that showed a number of 
popular diagrams used in simulation modeling. This section discusses two 
of the most popular diagrams in the survey, i.e., the ACD and the process 
flow diagram. We will also discuss another widely known diagram called 
the event relationship graph (ERG). The three diagrams are chosen because 
they focus on different aspects of a system that is to be modeled.

13.3.1 Activity Cycle Diagram (ACD)

ACD (Hills 1971) is an implementation-independent diagram that is used 
to model a system by focusing on the changes in the states of key entities in 
the system. When an entity arrives at the system, it must go through a set of 
activities that may change the state of the entity (for example, in service or 
waiting) until the entity leaves the system. In ACD, the change in the state 
of each entity is represented by a series of alternate dead and active states. 
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A dead state is represented as an oval and corresponds to a state where an 
entity must wait until the required resources are available. An active state is 
represented as a rectangle and corresponds to a state where an entity is in 
an activity with a specific duration (it may be sampled using a predefined 
distribution function). 

Figure 13.1 shows how ACD can be used to represent an A&E simulation 
model. The diagram shows the cycle of entity patients. This simulation model 
assumes that the arrival of patients follows a certain distribution function 
(hence, an active state). Once a patient arrives at A&E, the patient waits until 
the clerk is ready for the registration process (a dead state). When the clerk is 
ready, the registration takes a certain amount of time, which may be sampled 
from a distribution function. The process continues until the patient leaves 
A&E. 

In some cases, we may be interested in the state of a specific resource in the 
system over time. For this purpose, we can add the cycle of the resource to 
the diagram. For example, if we are interested in the utilization of each clerk, 
we can add a cycle for the clerk. The state of the clerk will constantly switch 
between being in a dead state of waiting for a patient to arrive, and being in 
an active state, registering a patient. The patient cycle meets the clerk cycle at 
the registration process. A complete ACD for the system under study should 
show the cycles of key entities and key resources. One of the modelers’ main 
tasks is to decide which key entities and resources should be included in the 
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model. ACD is commonly used to represent the model-domain component 
in a discrete-event simulation-modeling paradigm. One of the main reasons 
for this is that ACD could easily show key components such as: queues (all 
dead states), system state, resources, activities (most active states), and proc-
esses (all cycles).

13.3.2 Process Flow Diagram

A process flow diagram is commonly used to model the flow of processes in 
a system. A process in simulation is often defined as a sequence of activities 
(and events) in chronological order.

A process flow diagram focuses more on the sequence (or structure) of 
activities and the flow of entities from the point where they enter the sys-
tem until they leave the system. This is different from ACD, which focuses 
more on the states that the entities and resources are in. Most commercial 
visual interactive modeling software (VIMS) that supports discrete-event 
simulation uses some sort of process flow diagram. The VIMS have their 
proprietary symbols to represent activities and their sequence in a proc-
ess. In fact, some VIMS call the activities by other names such as tasks and 
machines. 

In this section, we choose one of the widely known process flow diagrams 
called Business Process Diagram (BPD). BPD is the diagram that is specified 
by Business Process Modeling Notation (BPMN). BPMN is a standard that 
has been developed to provide a notation that is understandable by all busi-
ness stakeholders (business people, business analysts, and technical devel-
opers) to model business processes. BPD is chosen because it is a widely 
known standard and is independent of any proprietary notations that may 
trap us into implementation-dependent components. Hence, it is suitable for 
our objective to provide a tool for communication about conceptual models 
between stakeholders that are independent of any software implementation. 
The four main BPD elements are activities (shown as rounded rectangles), 
events (circles), connectors (lines), and gateways (diamonds). As we know, 
a process is a sequence of activities and events. Hence, these four BPD ele-
ments can be used to model many different processes.

BPD activities are used to represent real-world activities. The activities can 
be further decomposed into subactivities. This facility is important to allow a 
hierarchical modeling process. In other words, the activity at one level in the 
hierarchy can be viewed as a process from a lower level in the hierarchy. The 
lowest-level activity, i.e., the activity that will not be decomposed further, is 
called a task. BPD events are used to represent events that happen in the real 
world. An event can start a process (i.e., start the first activity in the process), 
start an intermediary activity, or end a process (i.e., end the last activity in 
the process). BPD connectors are used to represent flows. BPD gateways are 
used to represent decisions in the process flow, i.e., joins, forks, and merg-
ers. BPMN (http://www.bpmn.org/) provides a more detailed explanation 
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of each element and other elements that are not mentioned here, such as pool 
and lane.

Figure 13.2 shows the BPD of a typical hospital operation, which includes 
three activities: Accident and Emergency (A&E), Outpatients, and In-patients. 
Patients arrive in the system through A&E and Outpatients. The arrivals of 
patients are events that start the processes. Depending on the condition, a 
patient can be admitted to hospital (In-patient) or discharged. Discharge is 
an event that terminates a process. If we want to add to the level of detail in 
the model, we can move to a lower layer in the system hierarchy and treat 
any of the activities as a process which can be decomposed further into a 
number of activities.

13.3.3 event r elationship g raphs (er g )

ERG (Schruben 1983) provides a concise representation of causality in a sys-
tem. ERG is effective in representing model-domain components in discrete-
event simulation-modeling paradigms. In an ERG, an oval represents state 
changes when an event occurs and an arrow shows that an event at the start 
of the arrow generates an event at the end of the arrow (hence, it shows the 
causality between the two events). The arrows also specify the conditions (/) 
and the times for events to be scheduled (arrows with time delays are drawn 
in bold). 

Figure 13.3 shows the ERG of a typical Outpatient department. A “GP 
referral” event triggers the whole process. This event serves as a bootstrap 
event that will generate subsequent arrivals to the Outpatient depart-
ment (with a specified time delay ta). The “GP referral” event generates a 
“start first appointment” event when at least one consultant is available. 
The “GP referral” event also changes the system state, i.e., increases the 
number of patients waiting for their first appointments. The “start first 
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appointment” event leads to a “finish first appointment” event (with a 
specified time delay t1). Subsequently, if the patient needs a follow-up 
appointment, a “finish first appointment” event may generate a “start 
follow-up appointment” event. Otherwise, treatment for the patient is 
complete. The “finish first appointment” event changes the system state, 
i.e., reduces the number of patients waiting for their first appointments 
and, in some cases, increases the number of patients waiting for their 
follow-up appointments.

13.4 Multifaceted Representation

Despite the differences in the definitions of a conceptual model, research-
ers agree that a conceptual model comprises a number of components. 
Hence, it is unlikely that a single diagram can be used to represent com-
pletely a  conceptual model. For this reason, a multifaceted representation 
is more suitable for a more complete documentation of a conceptual model. 
In a multifaceted conceptual model representation, a set of diagrams and 
textual  representation are used to represent different conceptual model 
components. Multifaceted representation has been used widely in software 
engineering. One of the most widely used multifaceted representations in 
software  engineering is the UML. UML 2.0 defines 13 types of diagrams 
to represent three aspects of software system: static application structure, 
behavior, and interactions. A more detailed description can be found at 
http://www.uml.org. A multifaceted representation such as UML has the 
potential to provide a more comprehensive representation of a conceptual 
model.
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13.4.1 u Ml  and SysMl

Richter and Marz (2000) proposed the use of four UML diagrams for docu-
menting a simulation project. They use the “use case” diagram to document 
the interaction between users and the simulation model. The structure of a 
simulation model is represented using a class diagram. The dynamics of the 
model are represented using an interaction diagram and a state diagram. 
Vasilakis et al. (2009) used UML to specify the requirements for a patient 
flow simulation model. They use the activity diagram to specify the flow 
of patients, “use case” diagram to give the detail function of each activity 
in the activity diagram and state diagram to capture the state-transition of 
patients. These works show that we can use UML diagrams to provide a 
multifaceted representation of a conceptual model. We can extend their work 
to include the use of sequence diagrams and collaboration diagrams to show 
the dynamics of a model. Figure 13.4 shows a sequence diagram of the same 
hospital system that was shown earlier in Figure 13.2. 

The Object Management Group (OMG) publishes the Systems Modeling 
Language (SysML) standard, which is an extension of UML and is designed 
to support system modeling. Huang et al. (2007) explored the use of SysML 
in representing conceptual models. One of the ultimate objectives is to pro-
vide a conceptual model representation (independent of any implementation 
software) that could be translated automatically to any simulation software 
(implementation dependent). SysML uses four UML diagrams (sequence 
diagram, state-transition, use case diagram, and package diagram), three 
modified UML diagrams (activity diagram, block definition diagram, and 
internal block diagram) and two new diagrams (requirement diagram 
and parameter diagram). These diagrams are used to specify a system’s 
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structure, behavior, and requirements. SysML is discussed in greater detail 
in Chapter 11.

13.4.2 u nified Conceptual Model

Onggo (2009) proposed the use of another set of diagrams to represent the 
different conceptual model components. Table 13.1 shows Onggo’s multi-
faceted conceptual model representation. In this chapter, we add a number 
of representation methods that were not part of Onggo’s original methods. 
The first column gives the domains of a conceptual model’s components. 
The second column lists the components of a conceptual model. The last 
column shows the diagrams selected to represent the conceptual model’s 
components.

13.4.2.1 Objectives Component

The objective is the most important component in simulation modeling. 
Objectives are used to judge the success of a problem-solving exercise and to 
compare the quality of various decision alternatives. Onggo uses an objective 
diagram to represent the objectives component of a simulation conceptual 
model. Objective diagrams (Keeney 1992) are commonly used to structure 
objectives in decision science. They classify objectives into two categories: 
fundamental objectives and means objectives. 

The fundamental objectives are the end result that we want to achieve and 
are organized into hierarchies. In an objective diagram, each fundamental 
objective is represented as a node in a tree. The higher-level fundamental objec-
tives represent more general objectives and their measurement can be obtained 
from lower-level fundamental objectives. Thus, the lowest-level fundamental 
objectives provide the basis on which various design alternatives are measured. 

TAble 13.1

Diagrams Used in the Unified Conceptual Model

Domain Component Representation

Problem Objectives Objective Diagram, Purposeful Activity Model
Inputs Influence Diagram

Outputs

Contents Business Process Diagram with textual representation

Data requirement Textual representation, Data dictionary

Model Discrete-Event Activity Cycle Diagram, Event Relationship Graph

System Dynamics Stock and Flow Diagram, Causal Loop Diagram

Agent-based Flowchart, Business Process Diagram, UML Activity 
Diagram

Source: Adapted from Onggo, B.S.S., Journal of Simulation, 3 (1), 42, 2009. With permission.
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Consequently, the highest-level fundamental objective provides the ultimate 
measurable consequence that will be used to evaluate and compare various 
design alternatives. Figure 13.5 shows an example of fundamental objectives 
from a project that seeks to improve the performance of a hospital. The per-
formance is linked to the waiting times of patients at the hospital, which are 
the averages of waiting times of patients in its various departments: A&E, 
Outpatients, and In-patients. These measurements will be used to compare 
alternatives. Second-level fundamental objectives can be further expanded if 
necessary. For example, A&E performance is obtained from two components: 
patient total time (98% of patients must spend less than 4 hours in A&E) and 
staff utilization.

Means objectives are important because they help us to achieve funda-
mental objectives and they are often used when the fundamental objectives 
are difficult to measure directly. In some cases, identifying means objectives 
can help us to characterize new alternatives. In the objective diagram, means 
objectives are organized into networks. Two examples of means objectives 
are shown in Figure 13.5. Maximizing the number of day cases and reduc-
ing patients’ lengths of stay are important because they increase the number 
of available beds. Hence, this may reduce the waiting times for both emer-
gency and elective admissions. In general, fundamental objectives can be 
differentiated from means objectives by continuously asking the question 
of why an objective is important. An objective is a means objective if it is 
important because it helps achieve another objective. The same question is 
repeated until we find an answer where an objective is important because it 
is important. 

The objective diagram, however, only considers the structure of objectives. 
It may be useful to show the conditions under which the structure is built. 
Kotiadis (2007) presented interesting work on using soft systems method-
ology to determine simulation objectives (see Chapter 10 for more detail). 
In particular, she presented steps to extract simulation objectives from the 

Hospital performance

A & E performance In-patients performanceOutpatients performance

Waiting time for
elective admission

Waiting time for
emergency admission

Length of stayDay cases 

Target on patient
total time 

Staff utilization 

Fig ur e 13.5
A&E: Objective diagram. (From Onggo, B.S.S., Journal of Simulation, 3 (1), 43, 2009. With 
permission.)
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purposeful activity model (PAM). This work implies that PAM can be used 
to complement the objective diagram to show the conditions under which 
the objectives diagram is drawn.

13.4.2.2 Inputs and Outputs Component

Once the objectives have been defined, we need to translate them into output 
variables that can be quantified, and to identify the different alternatives 
(input variables) that will achieve the objectives. Outputs can be directly 
inferred from objectives. The controllable input variables are sometimes 
referred to as the decision variables. The inputs are sometimes specified 
explicitly in the objectives; otherwise they can be obtained from the cli-
ents. Onggo (2009) uses an influence diagram to represent the relationship 
between input variables and output variables. 

The influence diagram (Howard and Matheson 1984) is commonly used 
to structure decisions by representing the relationship between key varia-
bles. An influence diagram consists of certain elements, as follows. Decision 
variables represent the decisions to be made (symbolized as rectangles in 
the diagram). Uncontrollable variables represent uncertainty or chance 
events (ovals). Outputs represent final consequences or payoffs (diamonds). 
Intermediary variables, including calculation nodes and constants, are used 
to compute the outputs (rounded rectangles). Relationships between nodes 
are represented using arcs. All arcs pointing to a rectangle (decision vari-
able) show sequences. It means that the node at the beginning of the arc must 
be known before the decision can be made. All arcs pointing to ovals, dia-
monds, or rounded rectangles (non-decision variables) show the relevance 
relations. The node at the beginning of the arc is relevant for the node at the 
end of the arc.

Figure 13.6 shows the representation of inputs and outputs component 
from an A&E department using an influence diagram. The output of the A&E 
simulation model is the A&E performance. The A&E performance is calcu-
lated from two intermediary variables, namely the total number of patients 
who spend 4 hours or less in the A&E department and staff utilization. 

Performance

Patient total time target Staff utilization

Doctors Nurses ClerksPatients (arrival rate
and severity level)

Fig ur e 13.6
A&E: Influence diagram. (From Onggo, B.S.S., Journal of Simulation, 3 (1), 44, 2009. With 
permission.)
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The decision variables are the numbers of doctors, nurses and clerks. The 
uncontrollable variables (shown as ovals) are the arrival rate and severity of 
condition of the patients. 

13.4.2.3 Contents Component

Once the inputs and outputs have been specified, the next step is to spec-
ify the transformation processes or the contents. The contents compo-
nent of a conceptual model describes the scope of the model, the level of 
detail, assumptions and simplifications. The scope of the model specifies 
all  relevant processes and their interactions within the boundary of the 
model. The level of detail specifies the required degree of detail for each 
process in the model and the required input data. Both scope and level 
of detail are determined based on the modeling objectives. Assumptions 
are necessary to address the uncertainty or unknown factors that may be 
important to the processes in the model. Simplifications are needed to han-
dle the complexity of processes in the model. One of the possible diagrams 
that can be used to represent the contents component is the BPD that was 
discussed earlier.

The scope of a conceptual model can be represented easily by specifying 
the relevant activities, events that start these activities, and the process flows 
(including decisions or branching of flows). Figure 13.2 shows the scope 
of a hospital simulation model that excludes the general practitioner (GP). 
Figure 13.2 also shows the level of detail of the processes. It considers A&E, 
Outpatients, and In-patients as three black boxes. It is possible to show a 
more detailed model for each activity in Figure 13.2. For example, Figure 13.7 
shows a detailed model of the A&E activity in Figure 13.2. The figure shows 
that the process in the A&E department starts with patient arrivals. There 
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A&E: Business process diagram. (From Onggo, B.S.S., Journal of Simulation, 3 (1), 45, 2009. With 
permission.)
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are two types of patient arrival: voluntary and by ambulance. A patient who 
arrives voluntarily at the A&E department will need to register before being 
evaluated by a nurse (triage) to determine the severity of the patient’s condi-
tion. One who arrives by ambulance may, however, bypass registration (the 
triage is done on the way to the A&E department). Next, the patient will be 
seen and treated by a doctor and/or nurse (either in the resuscitation room 
or a cubicle). After treatment, patients will either be discharged or admitted 
to the hospital. Some patients may need tests and X-rays, and these patients 
then need a second session with a doctor and/or nurse before discharge or 
admission.

BPD provides three artifacts that can be used to provide additional infor-
mation about an activity that is not directly related to the structure of the 
process flow. One of them is text annotation, which is suitable for repre-
senting the assumptions and simplifications used in the conceptual model. 
For example, in Figure 13.7, we can attach a text annotation to the activity 
“triage” that provides a list of assumptions, such as “the severity of condi-
tion of patients is modeled as a simple random sampling.” Similarly, we can 
attach a text annotation to the activity “test” that provides a list of simplifica-
tions such as “the service time for tests does not differentiate between the 
types of test (X-ray, blood test, etc.).”

13.4.2.4 Data Requirement Component

Data are an important part of any modeling technique. Hence, it is impor-
tant to recognize the required data early. At this stage, given the previous 
problem-domain components, we should be able to identify the data require-
ments. The required data should match the scope and level of detail of the 
conceptual model. Robinson (2004, chap. 7) discusses methods for dealing 
with unavailable data. The data requirement is often specified using textual 
representation. For example, Table 13.2 shows the data that need to be col-
lected for entity patients in the A&E system in Figure 13.7.

TAble 13.2

Data Requirement for Entity Patient

Field Type Note

Patient details Name, address, patient 
identifiers, etc.

This can be useful to identify patients and, if the 
analysis requires it, profile patients.

Admission time Date/Time This is needed to determine the distribution of 
admissions.

Severity level Minor or major This is needed to find the proportion of patients 
needing minor treatment and major treatment.

Time in A&E Minutes This is needed to validate the output of the 
model.
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13.4.2.5 Model-Dependent Component

As explained in the introduction, the method for representing model-
 dependent components depends on the modeling paradigm. In the discrete-
event simulation-modeling paradigm, the method should be able to represent 
key components such as: entities, resources, system states, queues, activities, 
events, and processes. Onggo (2009) uses diagrams that are independent 
of any software implementation such as: ACD, BPD, and ERG. A discrete-
event simulation model that is represented using these diagrams can be 
implemented in any simulation software. It is relatively straightforward to 
develop software that is able to read a model that is represented using any of 
the implementation-independent diagrams and either simulates the model 
(for example, Araujo and Hirata 2004, Pidd and Carvalho 2006) or converts 
the model to specific simulation software (for example, Huang et al. 2007).

The representation of components in system dynamics (such as stocks 
and flows) has been influenced by the notation given by Forrester (1961). 
Nowadays, the stock and flow diagram and the causal loop diagram (both 
are independent of software implementation) are widely accepted as stand-
ards in representing system dynamics models (Sterman 2004). This explains 
why many system dynamics VIMS use similar diagrams to represent sys-
tem dynamics models. In the agent-based simulation-modeling paradigm, a 
simulation model is formed by a set of autonomous agents that interact with 
their environment (including other agents) through a set of internal rules to 
achieve their objectives. Much of the literature represents agent-based simu-
lation models using flowcharts or pseudo codes. The flowcharts or pseudo 
codes are used to describe the internal rules of different agent types and the 
internal rules of a dynamic environment (i.e., its state is constantly changing, 
even if there is no action performed by any agent). Other than flowcharts, 
we can also use a BPD or UML activity diagram to represent an agent-based 
simulation model where each agent type is implemented in a swim lane.

13.5 Summary

We have discussed three categories of methods for conceptual model repre-
sentation: textual representation, diagrams, and multifaceted representation. 
Textual representation can be used to give a brief description of a model. This 
is particularly useful when we have a repository of simulation models. The 
description allows others to decide quickly whether a model is suitable, or 
to search for the most suitable model to be used. The diagrams are effective 
during conceptual model development. A multifaceted representation is the 
best representation for the complete documentation of a conceptual model. 
Multifaceted representation has another advantage. It allows us to verify the 
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consistency of conceptual model components (Onggo 2009). We have shown 
how to apply these methods to represent conceptual model components 
based on Robinson’s conceptual model definition. The same principle can be 
applied to other conceptual model definitions since most of the definitions 
have overlapping components. Although the author believes that the repre-
sentation methods discussed in this chapter could be applied to many appli-
cations in discrete-event simulation, it must be noted that the methods have 
been tested using a few business process models only. As noted in Robinson 
(2002), simulation applications are far from homogeneous; hence, it is possi-
ble that some of the methods may not be suitable for some applications.
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14
Conceptual Modeling for Composition 
of Model-Based Complex Systems

Andreas Tolk, Saikou Y. Diallo, Robert D. King, 
Charles D. Turnitsa, and Jose J. Padilla

14.1 Introduction

Conceptual modeling is often understood as an effort that happens before 
systems are built or software code is written and conceptual models are no 
longer needed once the implementation has been accomplished. Conceptual 
models are primarily described as mental models that are used in an early 
stage in the abstraction or as a simplification process in the modeling phase. 
This early stage of abstraction makes conceptual models difficult to verbalize 
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and formalize making them “more art than science,” as Robinson (Section 
1.1) mentions, given the challenging tasks to define applicable methods and 
procedures. This view is not sufficient for model-based applications. The goal 
of conceptual modeling in Modeling and Simulation (M&S) is not focusing 
on describing an abstract view of the implementation, but to capture a model 
of the referent, which is the thing that is modeled, representing a sufficient 
simplification for the purpose of a given study serving as a common conceptu-
alization of the referent and its context within the study.

In this sense, conceptual modeling in M&S is slightly different from its 
traditional conception in which the focus is on capturing the requirements of 
a system in order to replicate its behavior. The M&S view has the additional 
requirement that the execution of the model will provide some additional 
insight into some problem while the traditional view mainly focuses on sat-
isfying the identified requirements. In either view, the main challenge is to 
identify what should be captured in the conceptual model in order to enable 
users of the system to understand how the referent is captured.

In traditional conceptual modeling, this is less of a challenge because it is 
somewhat easier to look at the behavior of a system and identify its coun-
terpart in the real world. The desired function can be captured in use cases 
and serve for validation and verification. For example, it is obvious that an 
Automatic Teller Machine (ATM) is representative of a real teller as it can per-
form many similar interactions including necessary inputs and outputs. In 
M&S systems, interactions in terms of inputs and outputs are not sufficient 
to identify a referent because many referents have similar inputs and outputs 
when abstracted, which makes it impossible to identify which one the concep-
tualization is referring to. A conceptual model of a teller designed to study 
the average processing time of a customer is different from an ATM. In this 
case, the customers and the teller may be abstracted into probability density 
functions and a queuing system, as this may be sufficient for the study. The 
validity of answers is therefore highly dependent on the context of the model. 
In other words, the conceptual model in M&S needs to capture data in the 
form of inputs and outputs, processes that consume the data and needs a way 
to distinguish conceptualizations of referents from one another by capturing 
the assumptions and constraints inherent to the model. Conceptual models 
must capture this information. The reason for this requirement is that this 
information is needed to be able to decide if a given model can be used to solve 
a problem, e.g., it is possible to reuse the model of the teller introduced above 
to calculate the average processing time in systems similar to banks (like fast 
food restaurants, or supermarkets). It could also be tailored to calculate the 
average waiting time or average time in system for a customer. In addition, 
given a modeling question, several models can be put together or composed to 
provide an answer. However, information is needed that was captured by the 
conceptual model in order to be able to decide if a model is applicable or not.

This observation becomes practically relevant when considering the use of 
models as services that answer specific questions similar to any real-world 
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service (travel agency, bank) and orchestrate their execution to answer the 
modeling question. To be able to do this models need to be composed and 
orchestrated that can communicate with one another and provide the infor-
mation needed to make the decision whether a model is applicable in the 
current application.

In general, orchestration, reuse, and composition are highly sought after 
capabilities in M&S, but they are currently perceived to be costly, error-prone, 
and difficult for many reasons, technical and nontechnical. The challenges 
increase in service-oriented environments, where applicable services need to 
be identified, where the best available solution in the context of the problem to 
be solved needs to be selected, all required services need to be composed, and 
their execution needs to be orchestrated. In traditional solutions, these tasks 
are conducted by system engineers. The ultimate goal in service- oriented 
environments is to have intelligent agents performing these tasks. In order to 
attain this goal, agents need to have access to the same information and knowl-
edge used by system engineers. One of the first steps therefore should be to 
provide conceptual models that are machine understandable or computable. 
Yilmaz (2004) motivates this view in his research on defense simulation. 

A formalization of conceptual modeling has direct implications within a 
system of systems perspective as well. Within a pluralist context (Jackson 
and Keys 1984), different viewpoints imply that questions about the referent 
made by different people carry their own perceptions of the system with a 
lack of a unifying consensus. These individual perceptions ultimately influ-
ence whether two systems will be composed or not. The resulting compo-
sition based on individual perceptions may be comprised of conceptually 
misaligned models and produce inappropriate results. Informal mental 
models allowing individual perceptions must therefore be replaced by for-
mal representations of the conceptualization.

In order to support the composition of model-based solutions in service-
oriented environments, assumptions, constraints, and simplifications need 
to be explicitly presented. This needs to be done using metadata formally 
representing the conceptualization. This metadata can be read by intelligent 
agents and used to identify, select, compose, and orchestrate model-based 
solutions as required before. 

This chapter describes three engineering methods designed to capture 
data, processes, the assumptions and constraints of a conceptual model for 
model-based solutions, and shows how a computable conceptual model can 
be used particularly in support of composition, reuse, and orchestration. The 
focus of this chapter is on composability. The chapter is organized as follows:

 1. The first part reviews composability and interoperability and shows 
how the addition of complex M&S systems affects both. This sec-
tion also presents description frameworks that support conceptual 
modeling and what has to be taken into account in this process to 
support interoperability and composability.
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 2. The second part presents data engineering and model-based data 
engineering (MBDF) as complementary engineering methods that 
can be used to capture data and describe their meaning and rela-
tionships in support of interoperability. The section also discusses 
the difference between interoperation and interoperability. Process 
engineering is introduced as an engineering method that can be used 
to capture the description of processes and their relationships with 
other processes that are part of the conceptual model. Finally, con-
straint engineering is presented as an engineering method designed 
to document assumptions that the model is making about its data and 
processes and the constraints it puts on the use of processes. While 
data engineering and process engineering support interoperability, 
the addition of constraint engineering makes composability possible.

 3. The next part discusses how the conceptual model is captured in 
terms of data, process, and assumptions and constraints that can be 
formally expressed in a machine-understandable language using 
ontology.

 4. The final part concludes the chapter with a summary of the main 
points addressed and makes a case for the use of logic and math-
ematics to capture and expose semantic models so that they are dis-
coverable and accessible to systems that can potentially use them. 

14.2  Interoperability and Interoperation Challenges 
of Model-Based Complex Systems

As stated in the introduction, the engineering methods for conceptual mod-
eling supporting the composition of model-based complex systems must 
ensure that the necessary information enabling the decision of whether two 
model-based solutions can work together is provided as a formal specifi-
cation of the conceptualization. To this end, definitions are introduced for 
the two important concepts of interoperability and composability, which are 
followed by some supporting models that help to better understand what 
metadata needs to be provided and how.

14.2.1 interoperability and Composability

In order for two systems to interoperate, they need to fit together. Traditionally, 
systems that are able to interoperate are referred to as interoperable systems. 
The Institute of Electrical and Electronics Engineers (IEEE 1990) defines 
interoperability as “the ability of two or more systems or components to 
exchange information and to use the information that has been exchanged.” 
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Petty and Weisel (2003) discuss the differences and commonalities between 
interoperability and composability and show that the definitions are primar-
ily driven by the challenges of technical integration and the interoperation 
of implemented solutions versus the ability to combine models in a way that 
is meaningful. Model-based complex systems further add a new category of 
challenges to the already difficult problem of composability and interoper-
ability. A working definition for a model-based complex system can be derived 
from the definition of the combined terms: a system is made up of several 
components that interact with each other via interfaces; a complex system has 
many components that interact via many interfaces that  represent typically 
nonlinear relations between the components; model-based systems use an 
explicit formal specification of a conceptualization of an observed or assumed 
reality. While complexity already plays a major role in the traditional view of 
interoperability, the model-based aspect is not often considered. The work-
ing definition of interoperation used in this chapter is simply: two systems can 
interoperate if they are able to work together to support a common objective.

To explicitly deal with challenges resulting from differences in con-
ceptualization, the term composability is used. As with interoperability, 
the definitions used for the term composability are manifold. Petty et al. 
(2003) compiled various definitions and used them to recommend a com-
mon definition embedded in a formal approach. Fishwick (2007) proposed, 
in his recent analysis, the restriction of the scope of composability to the 
model level, and following the recommendations of Page et al. (2004) distin-
guishes between three interrelated but individual concepts contributing to 
interoperation:

Integratability•	  contends with the physical/technical realms of con-
nections between systems, which include hardware and firmware, 
protocols, networks, etc. 
Interoperability•	  contends with the software and implementation 
details of interoperations; this includes exchange of data elements 
via interfaces, the use of middleware, mapping to common informa-
tion exchange models, etc.
Composability•	  contends with the alignment of issues on the modeling 
level. The underlying models are purposeful abstractions of reality 
used for the conceptualization being implemented by the resulting 
systems.

In other words, integratability ensures the existence of a stable infra-
structure such as a reliable network, interoperability assures that sim-
ulation systems can be federated with each other, and composability 
assures that the underlying conceptualizations are aligned—or at least 
not contradictive.

The same recommendation is supported by Tolk (2006), where the impor-
tance of these categories for the domain of modeling and simulation is 
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emphasized. An evaluation of current standardization efforts shows that the 
focus of these standards lies predominately on the implementation level of 
interoperability and doesn’t consider conceptualization sufficiently. The mod-
eling process purposefully simplifies and abstracts reality and constrains 
the applicability of the model in the form of assumptions and constraints. 
While interoperability deals with simulation systems, composability deals 
with models; hence, interoperability of simulationsystems requires composability 
of conceptual models. 

14.2.2  r elevant Models r egarding Conceptual 
Modeling for Compositions

Conceptual models capturing the abstraction process are essential in order to 
evaluate whether systems can be composed. Ultimately, the goal is to make 
systems semantically accessible to another system so that they can make use of 
the conceptual model to select applicable solutions, choose the best available 
solution, compose the partial solutions to deliver the overall solution, and 
orchestrate their execution. This point is emphasized in (Benjamin, Akella, 
and Verna 2007, p. 1082):

The semantic rules of the component simulation tools and the seman-
tic intentions of the component designers are not advertised or in any 
way accessible to other components in the federation. This makes it 
difficult, even impossible, for a given simulation tool to determine the 
semantic content of the other tools and databases in the federation, 
termed the problem of semantic inaccessibility. This problem manifests 
itself superficially in the forms of unresolved ambiguity and unidenti-
fied redundancy. But, these are just symptoms; the real problem is how 
to determine the presence of ambiguity, redundancy, and their type in 
the first place. That is, more generally, how is it possible to access the 
 semantics of simulation data across different contexts? How is it possible 
to fix their semantics objectively in a way that permits the accurate inter-
pretation by agents outside the immediate context of this data? Without 
this ability—semantic information flow and interoperability—an inte-
grated simulation is impossible.

In the remainder of this section, several relevant models that can be applied 
to support the fulfillment of related requirements enabling semantic trans-
parency will be discussed.

14.2.2.1 The Semiotic Triangle

The view of many system developers is that systems supporting the same 
domain naturally are using very similar, if not the same, conceptualization. 
However, the principle documented by Odgen and Richards (1923) still holds. 
Odgen and Richards distinguish between referents, concepts, and symbols 
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to explain why communication often fails. Referents are objects in the real 
(or an assumed or virtual) world. When communicating about the referents, 
perceptions or interpretations of these referents are used and captured in 
concepts that reflect the user’s viewpoint of the world as object, etc., and then 
symbols are used to talk about the user’s concepts.

Figure 14.1 shows the relation of this semiotic triangle to the M&S domain. 
This model is similar to the one presented by Sargent (2001), where real-world 
domain, conceptual model, and implemented model are distinguished, and 
to the framework for M&S as recommended in Zeigler et. al., (2000), where 
the experimental frame with the source model, the model, and the simulator 
are distinguished.

It should be pointed out that the implementation does not reveal why 
the conceptualization was chosen, only which one was chosen. A common 
 conceptualization can result in different implementations. In order to ensure 
composability, conceptualization decisions need to be captured in addition 
to the implementation decision.

Furthermore, model-based solutions can only use their models and sym-
bols, and no longer use the referent. The formal specification of the concep-
tualization is their view of the world. In order to decide if two model-based 
solutions are composable a decision needs to be made whether a lossless 
mediation between the conceptualization is possible (in the context of the 
task to be supported by the composition).

14.2.2.2 Machine-Based Understanding

As the process needs to be supported by intelligent agents, users need to 
understand how agents can gain machine-based understanding of tasks 
to be conducted and model-based solutions that may be composed to 
support this task. Zeigler (1986) identified three requirements that are 
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Simulation System
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Fig ur e 14.1
The semiotic triangle for M&S.
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applicable in the context of understanding the conceptualization and 
implementation:

Perception:•	  The observing system has a perception of the system that 
needs to be understood. In Zeigler’s model, perception is not a cogni-
tive process but is simply capturing sensor input. It implies that data 
and processes characterizing the observable system be captured 
by the observing system in order to help identify, select, compose, 
and orchestrate the observed systems. It also implies that all data 
needed for these tasks are provided by the applicable systems that 
are observed. 
Metamodels:•	  The observing system has an appropriate metamodel 
of the observed system. The metamodels represent the categories 
of things the observing system knows about. As such, each meta-
model is a description of data, processes, and constraints explain-
ing the expected behavior of an observed system. Without such a 
metamodel of the observed system, understanding for the observing 
system is not possible. In Zeigler’s model, the main part of machine-
based understanding can be defined as identifying an applicable 
metamodel. 
Mapping:•	  Mappings between observations resulting in the percep-
tion and metamodels explaining the observed data, processes, and 
constraints do exist, are identified, and are applied in the observing 
system

In the context of composition of model-based solutions this implies that the 
metadata describing the conceptual model must be perceivable by the com-
posing agents and support the metamodel used to decide the composability. 
Data, processes, and constraints defining the models must be mapable to 
data, processes, and constraints defining the task to be supported.

14.2.2.3 Levels of Conceptual Interoperability Model

This leads to the question what information is needed to capture data, pro-
cesses, and constraints in a formal specification of the conceptualization. 
The related work on the challenges of interoperability and composability 
enabling the attainment of these objectives led to the development of the 
Levels of Conceptual Interoperability Model (LCIM). As documented in Tolk 
(2006), the LCIM is the result of several composability and interoperability 
efforts. During a NATO Modeling & Simulation Conference, Dahmann (1999) 
introduced the idea of distinguishing between substantive and technical 
inter operability. In his research on com posability, Petty (2002) enhanced this 
idea. In his work, he distinguished between the implemented model and the 
underlying layers for protocols, the communication layers, and hardware. 
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Realizing the need to explicitly address the conceptual layer, Muguira and 
Tolk (2003) published the first version of the LCIM, which was very datacen-
tric. The discussions initiated by the LCIM work, in particular the work of 
Page et al. (2004) and Hofmann (2004), resulted in the currently used version, 
which was first published by Turnitsa (2005). Figure 14.2 shows the evolution 
of layered models of interoperation resulting in the LCIM.

The LCIM exposes six levels of interoperation, namely the following:

The •	 technical level deals with infrastructure and network challenges, 
enabling systems to exchange carriers of information.
The •	 syntactic level deals with challenges to interpret and structure 
the information to form symbols within protocols.
The •	 semantic level provides means to capture a common understand-
ing of the information to be exchanged.
The •	 pragmatic level recognizes the patterns in which data are orga-
nized for the information exchange, which are in particular the inputs 
and outputs. These groups are often referred to as (business) objects.
The •	 dynamic level adds a new quality by taking the response of 
the system in form of context of the business objects into account. 
The same business object sent to different systems can trigger 
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very different responses. It is also possible that the same informa-
tion sent to the same system at different times can trigger different 
responses.
Finally, assumptions, constraints, and simplifications need to be cap-•	
tured. This happens on the conceptual level.

The LCIM has been applied in different communities. Wang et al. (2009) 
show the descriptive and prescriptive potential of the LCIM and evaluate 
a first set of specifications, in particular those defined by the simulation 
interoperability standards IEEE 1516, the High Level Architecture, and the 
Base Object Models (BOM) standard recently developed by the Simulation 
Interoperability Standards Organization (SISO). It is used in the following 
section to support the recommended engineering methods for conceptual 
modeling.

This section reviewed composability as it is currently understood and 
showed how it is related to yet different from integratability and interoper-
ability. The next section discusses how to capture data, processes and con-
straints using engineering methods.

14.3 Engineering Methods

Conceptual modeling must produce a machine-readable description in sup-
port of the levels of interoperation identified in the LCIM. On the conceptual 
level, assertions need to be defined to avoid conceptually misaligned com-
positions. On the dynamic level, the system states governing the processes 
need to be captured. Process engineering lays the foundation for this activ-
ity by defining the specification for the pragmatic level. Data engineering 
focuses on the semantic and the syntactic levels. 

14.3.1 Data engineering and Model-based Data engineering

Data engineering was developed to study the first four levels of interoperation 
of the LCIM, namely technical, semantic, syntactic, and part of the pragmatic 
level. The notion of data engineering was introduced in the NATO Code of 
Best Practice (NCOBP) for Command and Control Assessment (NATO 2002, 
p. 232) in support of the integration of heterogeneous data sources for com-
mon operations and operational analysis. While the NCOBP was written by 
international NATO experts, its application is not limited to military sys-
tems. The NCOBP was created more as an application-oriented introduction 
on how to conduct operations research studies on complex, complicated, 
and wicked problems, such as the command and control challenge in a 
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multinational organization with many independently developed informa-
tion systems and not necessarily always aligned doctrinal viewpoints.

The NCOBP introduced data engineering as an engineering method 
to ensure that valuable resource data are best utilized. As defined in the 
NCOBP, data engineering consists of the following four main areas:

Data Administration•	 : Managing information exchange needs includ-
ing source, format, context of validity, fidelity, and credibility. As a 
result of the processes in this area the data engineer is aware of the 
data sources and their constraints.
Data Management•	 : The processes for planning and organizing data 
including definition and standardization of the meaning of data as 
of their relations. Using the processes of this area, the data engineer 
unambiguously defines the meaning of the data.
Data Alignment•	 : Ensures that data to be exchanged exist in all partici-
pating systems. Using the results of data management, target data 
elements needs and source data abilities can be compared. The data 
engineer identifies particular gaps that need to be closed by the sys-
tem engineers responsible for the participating systems.
Data Transformation•	 : Technical process of mapping data elements 
from the source to the target. If all data are captured in the first 
three processes, data transformation can be automated by configur-
ing XML translators (Tolk and Diallo 2005).

Out of the four steps, data management is the most important step in data 
engineering and the most studied in the literature given that is the one that 
demands the most effort. To manage data, metadata registries have been 
defined to support the consistent use of data within organizations or even 
across multiple organizations. In addition, they need to be machine-under-
standable to maximize their use. Logically, the recommended structures for 
metadata registries are strong candidates for capturing the results of concep-
tual modeling for information exchange. 

This work is supported by standards, such as Part III of the ISO/IEC 11179 
“Metadata Registry (MDR)” standard that is used to conduct data manage-
ment. Using this standard, four metadata domains are recommended to cap-
ture information on data representation and data implementation, which are 
summarized in Figure 14.3:

The conceptual domain describes the concepts that were derived in •	
the conceptualization phase of the modeling process. This domain 
comprises all the concepts that are needed to describe the referent or 
referents relevant to the information exchange.
The property domain describes the properties that are used to •	
describe the concept. Concepts are characterized by the defining 
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properties. ISO/IEC 11179 refers to this domain as the data element 
concept.
The property value domain comprises the value ranges, enumera-•	
tion, or other appropriate definition of values that can be assigned 
to a property. ISO/IEC 11179 refers to this domain as the value 
domain.
Property instances capture the pieces of information that can be •	
exchanged. They minimally comprise the value of one property, 
which can be interpreted as updating just one value, or they can 
become an n-tuple of n properties describing a group of associated 
concepts, which represents complex messages or updates for several 
objects. ISO/IEC 11179 calls these property instances data elements.

Traditionally, only property instances are captured. From what has been 
specified in this chapter so far it becomes obvious that information needs to 
be specified in the context of the results of the underlying conceptualization 
to ensure the required semantic transparency. As the referent itself cannot 
be captured because it is replaced by its conceptualization, the information 
exchange model must at least capture the conceptualization of the model 
used and cannot be limited to the symbols used for its implementation. Tolk 
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et al. (2008) introduce preliminary ideas on how to use these structures to 
enable self-organization of information exchange, if machines are not only 
able to understand how the implementations are related to the conceptual-
ization, but how conceptualizations of different models are related to each 
other.

When talking about models as abstractions of a referent, it is unlikely 
that the same data are used in the same structure by the modelers involved. 
Model-Based Data Engineering (MBDE) introduces the notion of a Common 
Reference Model (CRM) to support data engineering for model-based solu-
tions. In MBDE, the definition of a common namespace captured in the form 
of a logical model is the starting point. The CRM captures the objects, attri-
butes, and relationships that are susceptible to being exchanged between two 
composed solutions. It is worth mentioning that, in theory, the four areas 
of data engineering are well-defined steps that can be conducted consecu-
tively. In practical applications, however, model-based solutions are hardly 
ever documented according to data engineering, so they become an iterative 
process. Furthermore, it should be pointed out that the CRM is not a fixed 
model comparable to the predefined information exchange models. Rather, 
the CRM is gradually modified to reflect new concepts needed, resulting in 
extensions, or to reflect new properties or additional property values, result-
ing in enhancement. 

MBDE can be explained using the same data engineering steps but must 
be supported by the use of domains of information exchange modeling. 

14.3.3.1 Data Administration 

If the data are not already structured and documented in form of an object 
or data model, this step is necessary. Conceptual modeling in support of 
data administration classifies each information exchange element either as a 
value (V) that can be grouped with other property values of its domain (D) 
that can be assigned to property (P), or as a property that can be grouped 
into a set of properties that identify a propertied concept (C), or as a concept 
that can be related to other concepts. At the end of this process, the domains 
of information exchange modeling for the information exchange capability 
(what can be produced as a data source) and the information exchange need 
(what can be consumed as a data target) for each system or service is docu-
mented. Figure 14.4 shows the result of the data administration process for 
two systems (or services) A and B.

14.3.3.2 Data Management

Using the information exchange modeling elements, the concepts (C) and 
the defining properties (P) of information exchange capability models and 
information exchange need models, common concepts and properties are 
identified. The result is a set of propertied concepts to which the elements 
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of the information exchange capability models can be mapped and that can 
be mapped to the elements of the information exchange need models. In the 
case of MBDE, these propertied concepts build the CRM, which is the logi-
cal model of the information exchange, or conceptualization, that can take 
place between the model-based solutions. It is worth stating that this shows 
that such a logical CRM always exists, whether it is made explicit or not, as 
whenever a property from system A is mapped to a property of system B. 
This constitutes a property that makes sense in the information exchange 
between the two systems, which is expressed by the CRM. The concepts of 
the CRM serve two purposes:

They build the propertied concepts of the properties of the CRM and •	
as such help the human to interpret the information exchange cat-
egories better. In particular when a CRM is derived from the infor-
mation exchange requirements, this is very helpful.
They conserve the context of information exchange for the receiving •	
systems, which is their information exchange need. 

Figure 14.5 shows the result of the data management process for two systems 
(or services) A and B.
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14.3.3.3 Data Alignment

System A is said to be aligned with system B under the CRM if they are logi-
cally aligned and an injective function can be constructed from the property 
value domain of the source property in system A to the target property in 
system B. Figure 14.6 shows the result of the data alignment process for two 
systems (or services) A and B.

In this area of data engineering, it is necessary to distinguish between 
the logical and physical aspects of data alignment. Logically, information 
can be exchanged between two systems if the properties of system A have 
properties in system B that are logically equivalent, i.e., they have the same 
meaning and participate in the same relationships or simply put they map 
to the same subset of the CRM. Not every property in system A will have 
a counterpart in system B, and only for those properties that are connected 
to a property of the CRM that is part of the information exchange require-
ments model is the mapping operationally required. If a connection from 
system A to system B exists for every property of the CRM representing a 
piece of the information exchange requirement, system A and B are logi-
cally aligned under the CRM, i.e., A and B are equivalent under the CRM 
or, simply put, A and B mean the same thing. It is worth mentioning that 
logical alignment is mathematically symmetrical but remains dependent 
on the CRM.

The next step is the physical alignment. While two properties may be 
aligned under the CRM logically, their actual representations can be a 
challenge, as the property value domains must be equivalent classes, or 
at least the class of the information exchange need property value domain 
must be in the range of the information exchange capability property value 
domain. The modeling and simulation literature deals with problems 
derived from this step under the term multiresolution modeling (Davis 
and Huber 1992, Davis and Hillestad 1993, Reynolds et al. 1997, Davis and 
Bigelow 1998).
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14.3.3.4 Data Transformation

Data transformation can map the information exchange elements to each 
other. This process of data mediation between the different viewpoints rep-
resented in the participating systems is already specified by the other three 
areas of data engineering, so that this step can be automated by using the 
results of the first three areas:

Data administration provides the needed structures of the infor-•	
mation exchange capabilities (system A) and information exchange 
needs (system B).
Data management provides the identification of common proper-•	
ties on the logical level, resulting in the CRM. The CRM can be con-
strained to those concepts and properties that satisfy the information 
exchange requirements of the operation to be supported.
Data alignment evaluates the logical alignment and the physical •	
alignment. For each property in the CRM representing a part of the 
information exchange requirement, a logical counterpart is needed 
in the information exchange capability of system A (data can be 
produced) and in the information exchange need of system B (data 
can be consumed). In addition, the property value domains used to 
implement these properties must be mapped to each other.
The result is a function that maps all relevant information exchange •	
elements of system A under the CRM to the logically correct infor-
mation exchange elements of system B. If the relations between A 
and B or not only injective, but also surjective, an inverse function 
exists as well.

Figure 14.7 illustrates the final result of data transformation:
Tolk and Aaron (2010) give application examples of MBDE using real-world 

CRM derived from projects conducted for the US Army and the US Joint 
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Forces Command and show how these applications can be generalized. In 
their contribution, they emphasize in particular the necessity of an efficient 
engineering management process in addition to the conceptual and techni-
cal constraints.

14.3.2 Process engineering

While the emphasis so far has been on the information exchange model in 
the form of conceptually understanding what information exchange ele-
ments are exchanged between systems, the LCIM requires process engineer-
ing that captures the context and system changes that covers the pragmatic 
and dynamic layers of interoperability. To understand how the data are 
used within a system or what is needed to produce the data so they can be 
transmitted or how the system states are going to change once the data are 
produced or consumed requires a formal method for handling processes, 
similar to the one introduced for data in the previous section. While such a 
formal method is not yet standardized, such a method as described in this 
section will result in process engineering.

In order to apply process engineering, specifics concerning each process 
must be made available. A process description language and a process-algebra 
designed in support of process engineering are objects of ongoing research, 
resulting so far in the identification of the first process-defining attributes:

Initialization Requirements:•	  Unambiguous definition of process-spe-
cific object-attribute values that must exist, including object–object 
relationships that must be in place, for the process to be feasible. 
Additionally, system operational requirements for the initialization 
of the process are specified, if required.
Time:•	  Capturing the dynamic characteristics of the process, such 
as when does the process start and how long does it take to com-
plete, and in terms of complex processes, the rate of progress. Such a 
method should be capable of identifying the relationship between a 
process, and the operational lifespan of the system it is supporting, 
and capturing the relationships previously identified (Allen 1983).
Effects:•	  A process affects some change in the attribution of an object in 
the system. This follows the definition of process, “a pattern of trans-
formation that objects undergo” (Dori 2002). Complex processes may 
affect more than one attribute in a single object, or perhaps more 
than one object. In this category of defining attributes, the range of 
these effects that take place, including how these effects occur, are 
captured. The changed attributes can be identity attributes of the 
system or can possibly be coincidental attributes.
Halting Requirements:•	  Some processes will terminate given a certain 
passage of operational time, others require specification of what 
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conditions cause the process to halt. This specification is more likely 
to be required for a complex process (where more than one attribute 
or object change is part of the process specification) than for a simple 
process.
Postconditions:•	  The state of the system once a process has halted 
including specifying the nature of the process or related processes 
once it has expired, such as termination, waiting in idle mode, etc.

Once a process description language that captures these attributes is for-
mally presented and used to define processes within a model of a system, 
then the application of process-algebra will enable the four steps of process 
engineering that can be understood and supported by machines.

Tolk et al. (2009) describe the four areas of process engineering, similar to 
data engineering, as an approach to align the process of separate systems. As 
with data engineering, process engineering follows:

Process Administration•	 : The processes included in the systems to be 
made interoperable must be identified, including information con-
cerning the original system that each process belongs to, and the 
operational context in which it acts.
Process Management•	 : This involves capturing and organizing pro-
cesses. Each process must be specified (capturing the pertinent 
attributes of the process, as described earlier) in order to enable the 
following steps. 
Process Alignment•	 : The defining attributes of the processes, previously 
mentioned, as organized within process management, determine 
where, in the life of the system, the process will occur, and what affect 
it has internally on the system, as well as what the process means 
externally for interoperability. These attributes must be aligned so 
that the resulting effects of interacting processes can be determined.
Process Transformation•	 : Finally, if the resulting effects of interacting 
processes do not produce a desired outcome, it may be necessary to 
perform some transformation to one or more attributes of some of 
the processes in question. The information concerning the processes 
that results from the first three steps will enable this to happen.

Current research focuses on using the web-ontology description for services, 
such as OWL-S (Martin et al. 2004). Related ideas have been published by 
Rubino et al. (2006) and others.

14.3.3 Constraint engineering

The assumptions, constraints, and simplifications of a model are part of con-
ceptual modeling, and are important elements that need to be evaluated if 
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two model-based solutions are to be composable. These assumptions are 
often not reflected in the implementation and unfortunately are rarely docu-
mented. Spiegel et al. (2005) present a simple physics-based model of the fall-
ing body problem to show how many assumptions are implicitly accepted 
within models, and how hard it is for experts to reproduce them “after the 
fact.” While already challenging for human system engineers, reproduction 
of such knowledge is currently perceived to be impossible for machines. 
Capturing constraints and assumptions in machine-understandable form 
result in constraint engineering enabling machines to address challenges on 
the level of conceptual interoperability.

King (2009) describes the foundation for constraint engineering, which 
covers the conceptual layer of the LCIM. In his work, he outlines a process 
for capturing and aligning assertions as well as a formalism to enable the 
envisioned machine support. Using the falling body problem described by 
Spiegel et al. (2005), he captures all applicable forces in an ontology using the 
Protégé Tool. He next develops a formalism to represent assertions, which 
are critical modeling decisions the model-based systems rely on. In his work, 
King (2009) distinguishes between four assertion types, namely assump-
tions, constraints, considerations, and competencies. Assertions must be 
encoded in a knowledge representation language to make them machine-
understandable. Each proposition consists of its axioms and logical asser-
tions that relate it to other concepts and propositions. Having the constraints 
and the assertion formalized, it then becomes possible to compare the sim-
plifications, assumptions, and constraints using logical reasoning to identify 
incompatibilities on the conceptual level, as envisioned in King (2007). The 
idea is captured in Figure 14.8.

As stated above, building and manipulating these lists requires an ontol-
ogy to express the assertions, and a formalism for representing them. The 
formal model of assertion has four components that are described in the 
following list:

Assumed to
be aligned

Compatible?

Model

Inputs Output

f(i)

Assertions list f

System

Input

Assertion list g

g(i)

Fig ur e 14.8
Evaluating compatibility of assertion lists. (Adapted from King, R. D., On the Role of Assertions 
for Conceptual Modeling as Enablers of Composable Simulation Solutions, PhD thesis, Old 
Dominion University, Norfolk, VA, 2009.)
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Use function:•	  Describes what assertions are used for.
Referent: •	 The referent of an assertion is the entity to which it refers. A 
referent can be an object, a model, a process, a data entity, a system, 
or a property of one of these. When an assertion acts as a constraint, 
the referent is what is being limited by the proposition.
Proposition•	 : The proposition of an assertion is the statement that it 
is making. Propositions are not restricted to simple concepts—they 
may encompass the content expressed by theories, books, and even 
whole libraries.
Scope: •	 This is an optional description that extends the portions of 
the overall system to which the assertion applies. Scope can limit 
consideration to a system component, the system as a whole, the 
environment of the system, or to combinations of these (e.g., compo-
nent-environment scope means that the scope of assertion is the rela-
tionship between the component and its environment.) If scope is 
not specified, then the assertion has component scope. Scope can be 
stated explicitly or implicitly.

The formal description of an assertion as described above is therefore a 
tuple with three mandatory components and one optional component 
structured as:

 Assertion < = > (referent useFN Proposition < scope > )

In order to apply these ideas, three steps need to be conducted, that are 
captured in the following list. The viewpoint is slightly different from the 
data and process engineering areas, but the results are comparable.

Capture assertions:•	  The first step is capturing the assertion proposi-
tions for the model, system and environment that are known within 
the scope or that are otherwise important. Each proposition rep-
resents a concept that is initially expressed as a natural language 
statement about the problem, one or more of its components, or a 
particular solution. The result of this step is the identification of the 
main concepts that will form the basis of the ontology.
Encode propositions: •	 The list of propositions expressed in natural lan-
guage statements must be encoded in a knowledge representation 
language to make them machine-understandable. Each proposition 
will consist of axioms and logical assertions that relate it to other 
concepts and propositions. Encoding happens in this step. King 
(2009) used the Protégé Tool, but every other tool supporting the 
encoding in logical form is applicable. The second step finally con-
sists of assigning the use function, referent and scope to each propo-
sition in both the model and the system lists. Experience shows that 
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the analyst should be prepared to make several iterations through 
this process step as the assertion lists are refined. The output of this 
step is list of statements encoded in a knowledge representation 
language.
Compare assertion lists:•	  The task of comparing assertion lists requires 
a multilevel strategy that is described in detail in King (2009). The 
full details go beyond the scope of this chapter except to note that 
the comparison is steered by the use function assigned to each prop-
osition in the previous step. The method is used to compare the list 
of assertions about the model to be composed with the statements 
about the system. Each proposition represents a concept and there 
are different ways that concepts can match. The topic of semantic 
similarity—deciding if, and how closely concepts match—is the 
subject of much current study, particularly with respect to research 
into the Semantic Web. The issue is a complex process influenced by 
many different factors or characteristics, however analysis such as 
performed by Kokla (2006) reveals four possible comparison cases 
between concepts: equivalence, when the concepts are identical in 
meaning; subsumption (partial equivalence), when one concept has 
broader meaning than the other; overlap (inexact equivalence), when 
concepts have similar, but not precisely identical meanings; and dif-
ference (nonequivalence), when the concepts have different mean-
ings. The first three are potentially useful for comparing assertions 
lists. Testing for equivalence is straightforward and involves search-
ing for text or label matches. Subsumption is handled by first order 
logic or a subset of FOL such as a Description Logics reasoner operat-
ing on an OWL-DL ontology. Determining overlap requires greater 
sophistication in reasoning, such as analogical reasoning described 
by Sowa and Majumdar (2003) or the agent-based metalevel frame-
work for interoperation presented by Yilmaz and Paspuletti (2005). 

King (2009) shows with these steps that it was possible to capture concep-
tual misalignments of services that did not show up on the implementation 
level. In other words: without capturing the results of conceptual modeling 
appropriately, these services would not have been identified as not compos-
able, and a composition of them would have been technically valid but con-
ceptually flawed, leading to potentially wrong results. Depending on the 
application domain the simulation composition uses, such conceptual mis-
alignment can lead to significant harm and even the loss of human lives or 
economic disasters, in particular when decision makers base their decisions 
on flawed analysis.

It is worth mentioning that the rigorous application of mathematics ensures 
the consistency of conceptualizations and their implementations and not 
that the conceptualizations are correct. In other words, it is possible to evalu-
ate if two different conceptualizations can be aligned to each other and if 
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transfer functions exists between resulting implementations. The three engi-
neering methods described here support together this evaluation and enable 
the support thereof by machine, if all needed artifacts are available and can 
be observed as discussed earlier in this chapter.

14.4 Technical and Management Aspects of Ontological Means

As stated in the introduction, in the context of service-oriented solutions and 
reuse of system functionality in alternative contexts users need machine sup-
port to identify applicable services, select the best available set of  solutions, 
compose all selected services to provide the solution, and orchestrate their 
execution. If machines are to help a user with these tasks it is essential to 
express all the findings captured so far in machine-understandable form. 
The means provided by current simulation standards, such as IEEE1278 
and IEEE1516, are not sufficient. The results of data, process, and constraint 
engineering need to be captured in machine-readable form. The conceptual 
model of a model-based solution must capture the concepts and their rela-
tions (data), transformations (processes), and rules and axioms (constraints). 
Without data engineering, the mediation between alternative viewpoints 
captures in model-based solution is not possible, which is needed to identify 
applicable solutions. Without process engineering, composition and orches-
tration cannot be achieved. Without constraint engineering, conceptual mis-
alignment may occur.

Ontological means have been applied for similar tasks in the context of the 
Semantic Web. Obrst (2003) introduced a spectrum of ontological means that 
is captured in Figure 14.9 (which merges the two figures originally used by 
Obrst into one).

The ontological spectrum emphasizes the viewpoint that ontologies are 
not a radically new concept, but that they are a logical step in the process of 
increasingly organizing data: starting with pure enumeration, thesauri relate 
similar terms and taxonomies relate them in an order. Capturing assump-
tions and constraints results in CM. Formulating the CM in the form of logical 
expressions and axioms leads to models and makes the represented specifi-
cations understandable for software systems, such as intelligent agents. It is 
worth mentioning that the “conceptual” model in this spectrum represents 
the implementation-independent abstraction of entities, as they can be cap-
tured in UML and OWL, which is less powerful than the viewpoint of con-
ceptualization presented in this chapter.

A common definition for an ontology is a formal specification of a conceptu-
alization (Gruber, 1993). It can be argued that the use of ontological means 
to represent conceptual models in machine-understandable form is quasi 
motivated per definitionem: ontologies are the required specification of the 
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conceptualization, and as they are formal, machines can read them and rea-
son about them. West (2009) gives an example for practical applications of 
ontologies in connection with modeling of data for a significant business. 
A more theoretic introduction to the use of ontological means has recently 
been published by Guizzardi and Halpin (2008) in their special issue on con-
ceptual modeling in the Journal of Applied Ontologies. The discussion on onto-
logical means in support of systems engineering are ongoing.

Recker and Niehaves (2008) broadened the scope, limits and boundaries 
regarding ontology-based theories for conceptual modeling beyond the pure 
technical discussions by focusing on three additional questions:

What does it mean to engage in conceptual modeling?•	
What does it mean to evaluate the outcome of conceptual •	
modeling?
What does it mean to achieve quality in conceptual modeling?•	

Following the work of Recker and Niehaves (2008), it is possible to distin-
guish between conceptual models that are defined to collectively construct 
an artifact that reflects subjectivity and purpose on one hand, and conceptual 
models that are defined to produce a direct representation of an external real-
ity on the other hand. This chapter focuses on the second viewpoint, as a 

Strong semantics

Weak semantics

Taxonomy

Thesaurus

“Conceptual” model

Logical theory

List

Axiology

Modal logic

First order logic

Description logic

OWL

UML

RDF, RDF/S

Topic map, object model

Entity relationship model

Database schema, XML schema

XML, relational model

Glossary, controlled vocabulary

Fig ur e 14.9
Ontological spectrum and methods.
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 machine-understandable description of the system or the service in order to 
identify applicable solutions is requested, the best one of these is selected, the 
solutions are composed and orchestrated in their execution. Furthermore, 
Recker and Niehaves (2008) distinguish between testing of conceptual 
models by comparing them to a reference model of reality versus consen-
sus building of experts. Finally, the quality needs to be measured by the 
degree to which properties of the modeled portion of reality are represented 
in the conceptual model. The alternative presented by Recker and Niehaves 
(2008)—its perception as a good model by a social community—is not objec-
tive-driven. Nonetheless, remembering the lessons recorded in Tolk and 
Aaron (2010), a consensus between engineers and managers is mandatory for 
successful procedures for data engineering, including the conceptual model-
ing aspects. As such, the observations of Recker and Niehaves (2008) deserve 
special attention for setting up the necessary management structures.

14.5 Conclusion

To be able to decide if two model-based solutions are composable to  support 
a common objective, implementation details of those solutions alone are not 
sufficient. In order to identify applicable solutions, select the best ones in the 
context of the task to be supported, compose the identified set of solutions, 
and to orchestrate their execution, conceptual models in the form of for-
mal specifications of conceptualizations of data, processes, and  constraints 
are mandatory. This formal specification must be captured as metadata. 
The methods in the ontological spectrum can be used to capture the meta-
data in machine-readable form. Without such annotations for model-based 
solutions that capture the results of the conceptual modeling phase as 
machine- understandable metadata, the concepts of system of systems and 
service-oriented architectures will remain incomplete.

Conceptual modeling for composition of model-based complex systems 
supported by the methods of data engineering, process engineering, and 
constraint engineering produces the metadata necessary to enable the loss-
less mediation between viewpoints as captured in the conceptualization of 
different models. We documented the necessary step of data engineering in 
detail and motivated the feasibility of similarly detailed methods for pro-
cesses and constraints. 

The rigorous use of mathematics to produce metadata for the annotation 
of model-based solutions is a necessary requirement to enable consistent sys-
tem of systems solutions or service-oriented architectures. The solutions pro-
vided by current standards as discussed in this chapter are not sufficient.
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15.1 Introduction

Although there is no consensus on a precise definition of a conceptual model 
(CM), it is generally accepted that a CM is an abstract representation of a 
real-world problem situation independent of the solution. This representa-
tion may include entities, their actions and interactions, algorithms, assump-
tions, and constraints.

Recently, there has been a growing tendency to adapt UML for  different 
modeling needs and domains. Having various representation capabilities, 
being a multipurpose modeling language and allowing extension mecha-
nisms, UML seems to be promising for conceptual modeling as well. 
However, as there is a lack of an agreed definition of a conceptual model, it is 
difficult to define a best set of UML views for representing it.

Nevertheless, in the military simulation domain, which constitutes one of 
the major areas of use of conceptual modeling, three approaches that support 
simulation conceptual modeling based on UML have emerged: The first one, 
Syntactic Environment and Development and Exploitation Process (SEDEP 
2007) is HLA (High Level Architecture) oriented. Two UML profiles have 
already been developed toward tool support (Lemmers and Jokipii 2003). 
The second one, BOM (Base Object Model) (BOM 2006) has been developed 
by SISO (Simulation Interoperability Standards Organization). BOMs are 
defined to “provide an end-state of a simulation conceptual model and can be 
used as a foundation for the design of executable software code and integra-
tion of interoperable simulations” (BOM 2006). Hence, BOMs are closer to the 
solution domain and the developer rather than the problem domain and the 
domain expert. The third one is the KAMA notation (Karagöz and Demirörs 
2007), which is more CMMS (Conceptual Model of the Mission Space) ori-
ented and platform independent. CMMS is defined as “simulation-imple-
mentation-independent functional descriptions of the real world processes, 
entities, and environment associated with a particular set of missions” by 
DMSO (U.S. Defense Modeling and Simulation Office) (2000b, Karagöz and 
Demirörs 2008). KAMA has been revised through experimental processes 
and empirically shown to be fit for CMMS purposes (Karagöz and Demirörs 
2008). A CMMS serves as a bridge between subject matter experts (SME) and 
developers. In CMMS development, SMEs act as authoritative knowledge 
sources when validating mission space models.

The roles of various parties involved in the scope of CM verification as 
discussed in this chapter will be defined as follows:

Modeler: Whoever prepares the UML-based CM from the formal, infor-
mal, written, or verbal description of the problem domain.

Inspector: Whoever carries the responsibility of verifying the UML-
based CM, possibly applying the techniques and performing the 
processes described in this chapter.
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SME: (Also referred in different texts as “domain expert,” “knowledge 
engineer,” or “ domain engineer.”) The party or parties who describe 
the problem domain formally, informally, in writing, or verbally 
based on their domain expertise and who may be consulted, if and 
when necessary, to enhance the preparation of UML-based CM or to 
validate an existing UML-based CM.

In this chapter, we will mostly deal with the verification of CMMS models 
developed with the UML-based KAMA notation. The general problem with 
utilizing a UML-based notation is that, in addition to defects and omissions 
that may be introduced during translation of problem domain to a concep-
tual model, semiformality of UML (Kim and Carrington 2000, Ober 2004), its 
support of multiple views, and its extension mechanism increases the risk of 
inconsistency, incorrectness, and redundancy. Furthermore, the specification 
of UML (UML Superstructure 2005) does not provide a systematic treatment 
of correctness, consistency, completeness and redundancy issues in models.

The rest of the chapter is organized as follows: First, we describe verifica-
tion and validation (V&V) in the context of CM. Then, desirable properties to 
be used in verification of UML models are presented along with a summary 
of research in two main streams: formal and informal approaches. Then, as a 
candidate for informal V&V, an inspection process to address semantic prop-
erties is presented. Next are two case studies, illustrating how that inspec-
tion approach helps to identify logical defects as well as some important 
semantic issues to be consulted a SME. The last section concludes the chapter 
with an evaluation of the described techniques.

15.2  Verification and Validation of Conceptual 
Models for Simulations

15.2.1 V&V

Boehm (1984) describes software validation as a set of activities designed to 
guarantee that the right product from a user’s perspective is being built and 
verification as activities that guarantee the product is being built correctly 
according to requirements specifications, design documentation, and pro-
cess standards. In particular, verification consists of mostly the static exami-
nation of the intermediate artifacts such as requirements, design, code, and 
test plans. Boehm’s well-known maxim puts this as “validation is building 
the right system whereas verification is building the system right.”

On the other hand, DOD (2001) defines simulation conceptual model 
validation as determining that the theories and assumptions underlying 
the conceptual model are correct and the representation of the validated 
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requirements is reasonably accurate for the intended purpose of the model. 
In particular, the conceptual model’s structure, logic, mathematical and 
causal relations, and the processes need to be reasonably valid with respect 
to the real system.

Therefore, CMs should be internally complete, consistent, coherent, and 
correct. That is, the CM should not include conflicting elements, entities, and 
processes. Redundant elements need to be avoided to establish a  coherent con-
cept of the simulation in which all components have certain functions and 
that all model components are reachable (Pace 2000). In addition to these 
criteria, Lindland et al. (1994) suggest a set of conceptual model quality eval-
uation criteria such as modularity, implementation independence, maintain-
ability, and generality that may be considered in V&V activities.

In Figure 15.1, an overview of a generally accepted simulation conceptual 
modeling, verification and validation framework is shown. It is seen that 
conceptual model development can contribute to overall validity of the sys-
tem in two ways. First, before the simulation is developed, the conceptual 
model may be checked against problem definition or domain of interest for 
validation such that defects can be eliminated earlier in the lifecycle. Second, 
a valid conceptual model enables computerized verification of the model.

15.2.2 V&V Process

Although the conceptual modeling activity has been mentioned within 
 generally accepted simulation development methodologies, the details of a 
standard validation and verification process for CMs have not been explicitly 
stated (Hue et al. 2001) even though CM V&V is expected to adhere to a set of 
established principles. For this purpose, a set of international standards can 
be considered as resources.

Among these, first, IEEE 1014 (Software Verification and Validation std.) can 
be used as a general guideline for V&V activities for SQA (Software Quality 
Assurance) of computerized simulation development projects. On the other 
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hand, NATO (2007), for instance, focuses specifically on V&V for federations 
that are developed according to the FEDEP (2000) (Federation Development 
and Execution Process). It considers verification, validation, and accredita-
tion (VV&A) activities as an “overlay” process to FEDEP, whereas the ITOP 
(2004) approach aims at supporting the capture, documentation, reuse, and 
exchange of V&V information. Finally, the REVVA 2 (2005) methodology is 
intended to provide a generic VV&A framework. In spite of having different 
focuses, these resources share some common concepts.

They agree that, in the first stages of M&S development, a vague intended 
purpose must be formulated, which is refined into a set of subpurposes, which 
again must be decomposed to a set of Acceptability Criteria (AC). Hence, pass-
ing the AC implies fitness for the intended purpose (for UML-based models 
these may be stated as properties). From AC, V&V objectives can be derived. 
V&V objectives are usually decomposed into more concrete V&V tasks. The 
execution of these tasks produces items of evidences to  substantiate the AC.

When a modeling notation such as UML or KAMA is used, AC and associ-
ated V&V objective formulation for the conceptual models should also take 
into account the set of representational and abstraction capabilities of the 
modeling notation. For example, if the purpose of conceptual modeling is 
just to provide a generic repository for reuse then the set of criteria will not 
focus on implementation requirements but rather on understandability, easy 
adaptation for reuse etc. On the other hand, if the conceptual model is to be 
used straight in FEDEP, run-time criteria should be defined also.

The following set of general principles for simulation V&V, originally 
 suggested by Balci (1998), can be followed during CM V&V:

 1. V&V must be conducted at each phase of modeling.
 2. The outcome of V&V should not be considered correct or incorrect.
 3. V&V must be conducted by personnel other than the developer.
 4. Exhaustive model testing is not possible.
 5. V&V must be planned and documented.
 6. Errors should be detected as early as possible.
 7. Multiple views and interpretations of models must be identified and 

resolved properly.
 8. Testing of each submodel does not guarantee integral model 

quality.

One striking observation one can make is that the accepted methodology or 
guidelines by the simulation V&V community (DMSO 2000a, FEDEP 2000, 
ITOP 2004) is that validation and accreditation of simulations is addressed 
in detail and extensively. However, internal verification of conceptual mod-
els is not explicitly addressed. This may be partly justified by the fact that 
during simulation software development projects, SQA is already performed 
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for requirements, design and code verification. However, due to experimen-
tal intentions of simulations in general, conceptual models are also used to 
represent a domain or problem entity to be simulated. Hence, in addition 
to a model of the software system, a model of the simulation domain must 
be represented. Therefore, there exists a need for verification to assure that 
the conceptual models for simulations are represented as to respond to the 
intended purpose of the simulation, in addition to verification of the model 
of software running the simulation. This distinction clarifies why only SQA 
is not enough.

On the other hand, as simulation projects may deal with a wide range of 
experimental domains, SMEs with specific domain expertise are consulted 
for validation of conceptual models. However, verification is required even 
if a validation activity is planned. Because, first, it would be unwise to wait 
until model validation to find out whether specified requirements related to 
the domain of interest have defects such as inconsistency, redundancy, and 
incompleteness. Furthermore, during model development, defects and incon-
sistencies may be introduced by the modeler. So it is necessary to assure that 
the model is at least internally correct and consistent before the validation 
process. Second, verification techniques identify illicit or inconsistent repre-
sentations and undesired behavior. For example, a deadlock in a Petri Net 
model representing a production process can be identified by verification 
techniques. Hence, verification identifies the issues validation may not. In 
this way during the validation, for example, the SME will not be distracted 
by possible concurrency issues that may be introduced when utilizing Petri 
Nets as a representation technique and can concentrate more effectively on 
how well the model represents the real world and its fitness for the intended 
use.

15.2.3 V&V Techniques

Verification and validation of conceptual models is part of the overall verifi-
cation and validation of simulations. A list of techniques for verification and 
validation that can be used in different phases of modeling and simulation 
(requirements, conceptual modeling, design, development, use, assessment) 
is listed by DoD VV&A RPG (2000, 2001).

Within the modeling and simulation literature, a variety of specific tech-
niques for V&V have been suggested by authors such as Law and Kelton 
(1999). Balci (1998) offers a collection of 77 verification, validation, and 
testing techniques. Furthermore, more specific V&V techniques for object-
oriented simulation models are presented (Balci 1997). Conventional meth-
ods are classified into four main streams; informal, static, dynamic, and 
formal in order of the level of formality required. Techniques, however, 
vary extensively, from alpha testing, induction, cause and effect graphing, 
inference, predicate calculus, and proof of correctness to user interface 
testing.



UML-Based Conceptual Models and V&V 389

Informal techniques are easy to use and understand with checklists, man-
uals, and guidelines. They may be effective if applied consistently and are 
relatively less costly. Furthermore, informal V&V techniques may be used at 
any phase of the simulation development process including conceptual mod-
eling. Static techniques can reveal a variety of information about the struc-
tural inconsistencies, data and control flow defects and syntactical errors. On 
the other hand, dynamic techniques find defects in behavior and results of 
the model execution. Finally, formal techniques rely on a formal process of 
symbol manipulation and inference according to well-defined proof rules of 
the utilized formal language. They are very effective, but costly due to their 
complexity and sometimes due to the size of the model under consideration. 
Many formal techniques are either unusable except in trivial examples or 
require an understanding of complex mathematics (Garth et al. 2002).

Validation of conceptual models is usually informal and consists of SME 
reviews or audits, self inspection, face validation, etc. In addition, Sargent 
(2001) mentions the use of traces, again an informal technique. The use of 
traces is the tracking of entities through each submodel and the overall 
model to determine if the logic is correct and if the necessary accuracy is 
maintained. If errors are found in the conceptual model, it must be revised 
and conceptual model validation should be performed again. Furthermore, 
CM validation can be also performed using Simulation Graph Models (Topçu 
2004). These are mathematical representations of the state variables, events 
that change the state, and the logical and temporal relationships between 
events.

On the other hand, UML-based CMs are also prone to errors; however, 
well-known resources (DMSO 2000a, NATO 2007, ITOP 2004, REVVA 2005) 
do not provide any guidance specific to UML-based CM verification. In the 
following section we review a wider category of research related to UML 
model verification.

15.3 Verification of UML-Based Conceptual Models

In general, formal and informal approaches complement one another, in 
addressing V&V challenges. However, in order to talk about verification, 
first, the desired properties should be defined. In the following section, we 
present the types of desirable properties for UML models.

15.3.1 Desirable Properties for u Ml -based Models

Like any other language, UML has its syntax and semantics (UML 
Superstructure 2005). Syntactic correctness or well-formedness rules of a 
UML model are specified in the abstract syntax through metamodels or by 
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object constraints language (OCL) constraints. For example, the properties 
such as (1) “every class should have a unique name” or (2) “an initial node 
in an activity diagram has at most one outgoing flow” are desired syntactic 
properties for a UML model. On the other hand, some of the semantics for 
UML elements are described informally in natural language in the specifica-
tion. A simple example of semantic property is, “All generalization hierar-
chies must be acyclic.” However, the specification is quite voluminous and 
there is not a systematic treatment of semantic properties.

According to Sourrouille and Caplat (2002), there are five levels of prop-
erties a UML model must possess: The first level defines the semantics of 
the modeling primitives of the UML. Well-formedness rules that express 
invariant property of metaclass instances are of this level. These con-
straints link attributes and associations of the metamodel. At the second 
level are constraints added by the extension mechanism of UML when 
UML is extended for a specific domain. These constraints must not conflict 
with other level constraints. Third level properties ensure conformance to 
modeling norms and standards. They are used to make models more pre-
cise, developed with preferred modeling practices and style. For example, 
Berenbach (2004) describes heuristics and processes for creating seman-
tically correct models that are presented for analysis and design phases. 
Examples are (1) there will be at least one message on a defining sequence 
diagram with the same name as each included use case since a set of 
sequences diagrams are represented by a use case, and (2) Use an activ-
ity diagram to show all possible scenarios associated with a use case. The 
fourth level contains properties specified by the modeler for the specific 
model in development. The last two are implementation and coding con-
straints. These are to be considered as a part of the simulation framework 
rather than conceptual models.

One can also distinguish between static and dynamic properties of a UML 
model (Sourrouille and Caplat 2003). The most interesting properties of the 
dynamic type in the literature (Berardi et al. 2005) are based on the seman-
tics of class diagrams. Similar properties are used by Queralt and Teniente 
(2006) however they add OCL constraints in class diagrams.

The following are some examples of properties of this type:

 1. Consistency of the class diagram: A class diagram is consistent if its 
classes can be populated without violating any of the constraints in 
the diagram.

 2. Class and relation equivalence: Two classes are equivalent or redundant 
if they denote the same set of instances whenever the constraints 
imposed by the class diagram are satisfied.

Some of semantic properties are applicable only for specific kinds of dia-
grams. Csertan et al. (2002), for example, verify general properties defined 
for state diagrams. In their study, properties defined by Levenson (1995) are 
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used. Among the defined properties are (1) “All variables must be  initialized,” 
and (2) “All states must be reachable.”

Engels et al. (2001) mention horizontal and vertical UML consistency 
properties. They acknowledge that horizontal consistency properties are 
desired and may be a means to reduce contradictions that might exist due 
to overlapping information residing in different views of the same model. 
An example of a property related to horizontal consistency is: (1) “Each 
class with object states must be represented with a state-chart diagram.” 
They also mention about vertical consistency properties used to reduce 
inconsistencies that may exist among different abstraction levels. An 
example for this type of property is: (2) “The set of states of an object 
defined by a parent class must be a subset of the set of states of an object 
of the child class.” Some research studies (Kurzniarz et al. 2002, Kurzniarz 
et al. 2003, Van der Straten et al. 2003) have formally defined these kinds 
of properties.

Ambler (2005) lists a collection of conventions and guidelines for cre-
ating effective UML diagrams and defines a set of rules for develop-
ing high-quality UML diagrams. In total, 308 guidelines are given with 
descriptions and reasoning behind each of them. It is argued that,  applying 
these guidelines will result in an increased model quality. However, inter-
view properties are not considered at all. Some examples of properties are 
(1) “Model a dependency when the relationship is transitory in a  structural 
diagram,” (2) “Role names should be indicated on recursive relationships,” 
and (3) “Each edge leaving a decision node should have a guard.” A simi-
lar approach is used by SD Metrics tool (2007), which checks adherence 
to some UML design rules. Rules extend from well-formedness rules of 
UML to object-oriented heuristics collected from the literature. Most of 
the rules are simple syntactic rules. Some examples of errors detected are 
(1) the class is not used anywhere, (2) use of multiple inheritance class 
has more than one parent, and (3) the control flow has no source or target 
node, or both.

On the other hand, a perspective-based reading method for UML design 
inspection, so-called object-oriented reading techniques, have been pre-
sented by Travassos et al. (2002). Examples of properties provided are 
(1) there must be an association on the class diagram between the two 
classes between which the message is sent, and (2) for the classes used in 
the sequence diagram, the behaviors and attributes specified for them in 
the class diagram should make sense ( sic Travassos et al. 2002). Another 
informal approach is suggested by Unhelkar (2005). Quality properties 
within and among each diagram type have been described along with 
checklists for UML quality assurance. Although conceptual modeling 
(CIM, Computation Independent Model) is considered separately and 
verification and validation checklists in different categories such as aes-
thetics, syntax and semantics are provided, most of the checklist items 
are related to validation and completeness. Examples of the properties are 
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(1) the notation for fork and join nodes should be correctly used to rep-
resent multithreads, and (2) the aggregations should represent a genuine 
“has a” relationship.

This section has briefly described different type of properties by giving 
examples from various studies in the literature. It is clear that each of these 
studies consider only certain type of properties and there is a lack of agree-
ment on a set of desirable properties for quality UML CMs.

15.3.2 Formal Techniques for u Ml  CM Verification

There are many studies that rely on the transformation of UML models to 
a formal language (Amalio and Polack 2003) for checking desirable proper-
ties in the target formalism. This type of research work on verification of 
UML models either emphasizes the structural perspective or behavioral per-
spective. The following section summarizes the research based on these two 
perspectives.

15.3.2.1 Approaches with Structural Emphasis

According to Mota et al. (2004), First Order Logic (FOL) is quite suitable for 
 representing UML class diagrams for consistency verification purposes 
because, lately XMI (Meta Data Interchange XML [eXtensable Markup 
Language]) is being used for model exchange. And any valid XML  description 
may be associated to a DOM (Document Object Model). As DOM descrip-
tions are easily mapped into FOL expressions, all modern UML-based case 
tools that export XMI can be used for this purpose.

The example class diagram in Figure 15.2 is represented in FOL asser-
tions in Figure 15.3. However, this is a syntactically correct (well-formed) 
but inconsistent class diagram. Intuitively, “mobile launcher” and “fixed 
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Fig ur e 15.2
Semantically incorrect UML class diagram example.
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launcher” classes are disjoint, i.e., they can not have common instances as 
imposed by the generalization relation. But formally, because of assertions 
2 and 4, the knowledge base in Figure 15.3 becomes inconsistent.

It is in general possible to translate FOL statements to an input lan-
guage of an inference engine such as Prolog to check incrementally the 
consistency conditions. However, the general decision problem of valid-
ity in FOL is undecidable. In order to overcome this, a fragment of FOL, 
called Description Logics can be used for representing CMs. As an exam-
ple, Berardi, Calvanese, and De Giacomo (2005) and Van der Straten et al. 
(2003) rely on the transformation of UML models into description logics. As 
opposed to FOL, subsets of description logics, which can be used for seman-
tic consistency of only a restricted subset of class diagrams, have decidable 
inference mechanisms. By exploiting the services of description logic infer-
ence engines for example (ICOM 2000), various kinds of checks for proper-
ties can be performed. Among these are the properties such as consistency 
of a class diagram.

Inference engine Sherlock, for example (Caplat 2006), linked to a UML 
case tool is used. In this work, models are built using a UML-modeling tool 
with tags and constraints. As a lighter alternative, instead of first describ-
ing the MOF (Meta Object Facility), they have chosen to describe the UML 
metamodel directly in the inference engines language. Next, models are 
expressed in terms of this metamodel. UML metamodel and generic rules 
are added. Finally, the UML model is loaded and checked.

Dupey (2000) has proposed to generate formal specifications in the Z 
language with proof obligations from UML diagrams. This is done auto-
matically with the RoZ tool. UML notations and formal annotations reside 
together: the class diagram provides the structure of Z formal skeleton while 
details are expressed in forms attached to the diagram. Either OCL or Z-Eves 
constraints are used. Then the Z-Eves theorem prover is used to validate a 
given diagram.

Similarly, Marcano and Levy (2002) describe an approach for analysis and 
verification of UML/OCL models using B formal specifications. In this work, 
a systematic translation of UML class diagrams and OCL constraints of a 
system into a B formal specification is given. They propose to manipulate 
a UML/OCL model and its associated B formal specification in parallel. At 
first a B specification is derived from UML class diagrams. Then, OCL con-
straints of the model are automatically translated into B expressions. Two 

1) ∀ x. Mobile launcher(x) → launcher(x)
2) ∀ x. Mobile launcher(x) → ⎤ fixed launcher(x)
3) ∀ x. Fixed launcher(x) → launcher(x)
4) ∀ x. Mobile launcher(x) → fixed launcher(x)
5) ∀ x. Launcher(x) → mobile launcher(x) ∨ fixed launcher(x) 

Fig ur e 15.3
A part of FOL representation of UML class diagram shown in Figure 15.2.
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types of constraints are taken into account: invariants specifying the static 
properties, and pre-/post-conditions of operations specifying the dynamic 
properties. The objective is to enable the use of automated proof tools avail-
able for B specifications in order to analyze and verify the UML/OCL model 
of a system.

Andre, Romanczuk, and Vasconcelos (2000) have presented a translation of 
UML class diagram into algebraic specification in order to check consistency. 
They aim to discover inconsistent multiplicities in a class diagram and deal 
with important concepts of UML class diagrams: class, attribute, association, 
generalization, association constraints and inheritance. The theorem prover 
used discovers some of the inconsistencies automatically; others require the 
intervention of the user.

15.3.2.2 Approaches with Behavioral Emphasis

Works under this category focus on property checking in mostly behavioral 
diagrams such as activity, state-chart, and sequence diagrams. For verifica-
tion of behavioral properties, first a suitable formal verification formalism 
(e.g., a Petri Net) has to be chosen capable of verifying the aspects associ-
ated to the property. For example, for the property of deadlock freedom, the 
formalism has to support the aspects of concurrency, communication, and 
interaction of processes. A UML model must first be translated into such a 
specification language.

There are various types of formalisms used in different studies that deal 
with verification of behavioral properties in activity and state-chart  diagrams. 
For example, Eshuis and Wieringua (2004) describe a tool for verification of 
workflow models specified in UML activity diagrams. The tool, based on a 
formal semantics, translates an activity diagram into an input format for a 
model checker. Also, techniques are used to reduce an infinite state space 
to a finite one. With the model checker, any propositional property can be 
checked against the input model. If a requirement fails to hold, an error trace 
is returned by the model checker. They illustrate the whole approach with a 
few example verifications.

In Chang et al. (2005) and in Zhao et al. (2004), for example, UML mod-
els are translated to Petri Nets for analyzing the behavioral aspects. In the 
former study, the goal is to use the graphic interface and the mathematical 
analysis methods of the Petri Net to verify the logic correctness of the flow 
control mechanism. In the latter study, deadlock, liveness, boundedness, 
and reachability properties are verified using Petri Net properties defined 
by Murata (1989).

Apart from approaches using formal environments, algorithmic 
approaches have also been proposed. (Litvak 2003) describes an algorithm to 
a check consistency between UML Sequence and State diagrams. The algo-
rithm also handles complex state diagrams such as those that include forks, 
joins, and concurrent composite states. They have implemented BVUML, a 
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tool that assists in automating the validation process and consistency check 
algorithm.

Recently, Gagnon et al. (2008) presented a framework supporting for-
mal verification of concurrent UML models using the Maude language. In 
spite of its relatively limited scope of applicability, the interesting aspect of 
this research is that both static and dynamic features of concurrent object-
 oriented systems depicted in UML class, state and communication diagrams 
are considered, unlike the majority of similar studies that adopt a single 
perspective.

15.3.3 Tool Support for u Ml -based Conceptual Model Verification

UML tools that can be used for property checking of UML-based CMs are 
available. However, many of them are based on syntax (Rational 2004) and 
some of the well-formedness rules of static semantics (Argo 2002, OCLE 
2005, Poseidon 2006). Basic consistency checks for UML can be done with 
CASE tools, which are becoming more and more sophisticated (Egyed 2006). 
In these conventional case tools, however, properties of a behavioral nature 
such as the absence of deadlocks and livelocks can not be checked.

For example, Argo UML tool has many well-formedness rules imple-
mented. Furthermore, the tool performs these checks on the fly and catego-
rizes them under three priorities. However, many of the checked properties 
are based on well-formedness rules of static semantics and heuristics of 
object-oriented development specifically for producing JAVA code.

MDSD (Model Driven Software Development) tools have been developed 
to support metamodeling. These include graph-transformation-based edi-
tors like DiaGen (Minas et al. 2003), ATOM (De Lara et al. 2002), and Meta 
Edit (2007), which generate domain-specific editors from language specifica-
tions based on graph transformation. However, graph-transformation-based 
editors are usually purely syntax directed, i.e., each editing operation yields 
a syntactically correct diagram (Taentzer 2003). Meta Edit for example is a 
commercial case tool for domain-specific software development. It allows 
users to define both basic rules and checking rules depending on the graph 
type. By the help of this tool, the developer can define the modeling ele-
ments, the types of graphs and the relations between modeling elements, so 
the metamodel rules are enforced while developing the model. These rules 
depend on the graph type and can vary between graphs. The model checker 
is a powerful tool for enforcing metamodel rules. So by using Meta Edit 
(2007) for modeling, various verification activities can easily be performed 
and also the injection of various kinds of defects can be prevented. Hence, 
when the domain rules are mostly static the tool may be helpful for verifica-
tion. Other environments such as Open Architecture-ware (2007) and GME 
(2006) can be used to check properties related to syntax and simple consis-
tency rules of the domain-specific notation.
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Lilius and Paltor (1999) for example developed vUML, a tool for 
 automatically verifying UML models. UML models are translated into the 
Process Meta Language (PROMELA) and model-checked with the SPIN 
model checker. The behavior of the objects is described using UML stat-
echart diagrams. The user of the vUML tool neither needs the know how to 
use SPIN nor PROMELA. If the verification of the model fails, a counterex-
ample described in UML sequence diagrams is generated. The vUML tool 
can check that a UML model is free of deadlocks and livelocks as well as 
that all the invariants are preserved. In general, the translation employed 
is not trivial.

Other tools for verification exist and each one here implements a particu-
lar kind of semantic property checking (Statemate-Magnum 2007, Tabu 2004, 
Eishuis and Weringua 2004, Schinz et al. 2004), adopting a particular formal-
ism. Hence, complexity and semantic correspondence problems remain to 
be tackled.

15.3.4 inspections and r eviews for u Ml  Model Verification

Inspections and reviews are considered a fundamental way to achieve 
 software quality. Fagan (1976) is one of the pioneers in this field. He defines 
an inspection as “formal, efficient, and economical method of finding errors 
in design and code.” A defect is defined as “any condition that causes a mal-
function or that precludes the attainment of expected or previously speci-
fied results.” It is argued that inspections have evolved into one of the most 
cost-effective methods for early defect detection and removal (Laitenberger 
and DeBaud 2000). It has been claimed that inspections can lead to the detec-
tion and correction of between 50 and 90% of software defects (Gilb and 
Graham 1993).

During defect detection phase of inspections, inspectors read the software 
document to determine whether quality requirements, such as correctness, 
consistency, testability, or maintainability, have been fulfilled. The defect 
detection and defect collection activities can be performed either by inspec-
tors individually or in a group meeting. Since findings reveal that the effect 
of inspection meetings is low (Johnson and Tjahjono 1998), defect detection 
is considered as an individual activity (Basili 1996).

The defect detection activity can be conducted using three types of meth-
ods. The most widely used defect detection method is ad hoc review, which 
provides no explicit support to the inspectors. The inspectors have to decide 
on how to proceed, or what specifically to look for during the activity. Hence, 
the results of the review activity in terms of potential defects or issues are 
fully dependent on inspectors experience and expertise. Checklist-based 
reading on the other hand (Gilb and Graham 1993) provides some guidance 
about what to look for in a review, but it does not describe how to perform 
the required checks. Third, due to effectiveness problems in ad hoc and 
checklist methods, Porter et al. (1995) developed a scenario-based method 
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to offer more procedural support in which scenarios are derived from defect 
types. A scenario describes how to find the required information to reach a 
possible defect.

Few studies have been published in the area of inspection of UML mod-
els. Travassos et al. (2002) describe a family of software reading techniques 
for the purpose of defect detection of high-level object-oriented designs rep-
resented using UML diagrams. This method is a type of perspective-based 
reading for UML design inspection and can be considered as following the 
line of techniques discussed by Basili et al. (1996). Object-Oriented Reading 
Techniques consist of seven different techniques that support the reading of 
different design diagrams. This method is composed of two basic phases. In 
the horizontal reading phase, UML design artifacts such as class, sequence 
and state chart diagrams are verified for mainly interdiagram consistency. 
In the vertical reading, design artifacts are compared with requirements 
artifacts such as use case description for design validation. Hence most of 
the properties checked in these studies are related to validation and the main 
artifact considered is software design rather than a conceptual model.

An important book on UML quality assurance (Unhelkar 2005) describes 
quality properties within and among each diagram type along with check-
lists for UML quality assurance. The foundation for quality properties are 
set by the discussion on the nature and creation of UML models. This is fol-
lowed by a demonstration of how to apply verification and validation checks 
to these models with three perspectives: syntactical correctness, semantic 
meaningfulness, and aesthetic symmetry. The quality assurance is carried 
out within three distinct but related modeling spaces: (1) model of problem 
space (CIM in MDA terms), (2) model of solution space (Platform indepen-
dent model), and (3) Model of background space (Platform-specific model). 
This makes it easier for the inspectors to focus on the appropriate diagrams 
and quality checks corresponding to their modeling space. Although CIM 
(Computation Independent Model) is considered separately and verification 
and validation checklists in different categories such as aesthetics, syntax, 
and semantic are provided, most of the checklist items are related to com-
pleteness. Items related to verification are mostly syntax, static semantic, or 
simple cross-diagram dependency checks.

15.4  An Inspection Approach for Conceptual 
Models in a Domain-Specific Notation

15.4.1 Need for a Systematic inspection Method

Generally, formal techniques for verification, while being very effective are 
often very costly due to their complexity and sometimes due to the size of the 
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model under consideration (Garth et al. 2002). And many of the studies based 
on transformation to formal languages are restricted to one or two types of 
diagrams. Hence, only certain dynamic aspects are analyzed with Petri Nets 
for example. Moreover, the formalism also restricts the type of properties to 
be checked.

On the other hand, when a UML-based notation is used for conceptual mod-
eling, mapping of UML diagrams into a formal notation yields the semantic 
correspondence issue. Besides, most of the formal techniques assume at least 
a predefined completeness in models. However conceptual models, unlike 
design models, are developed in a sketchy manner at the initial phase of the 
requirements elicitations and may be incomplete in various ways that are 
difficult to determine in advance.

Furthermore, as conceptual models are in general not executable, it is 
not easy to use dynamic techniques either. Conceptual models are used 
primarily as a means of communication, and the term conceptual inher-
ently implies tractable abstraction levels and size. Consequently, tech-
niques such as walkthroughs and inspections can be used rigorously for 
assuring conceptual model quality. It may also be cost effective to inte-
grate the verification tasks with the validation tasks that require human 
interpretation.

Figure 15.4 summarizes the advantages and disadvantages of both the for-
mal approaches and informal approaches for CM verification. An inspection 
approach may be preferred to a formal approach due to various advantages: 
First, informal techniques are easy to use and understand.

Their application is straightforward. As checklists and guidelines are 
the main sources, they can be performed without any training in mathe-
matical software engineering. Inspections may be very effective if applied 

• Complex, diverse, and
unsupported tools

• Complex languages/math
• Lack of trained engineers
• Unproven scalability

state space explosion
undecidability   
Traceability problem Provably correct models

Theorem proving 

Model checking tools

Formal representation and
formal verification

Disadvantages

Advantages Still possibly
inconsistent, incorrect
ambiguous models 

Easy to understand and apply

Modern SE methodologies/agile methods
Works for incomplete specification 

UML-Based  models
and inspections  

Disadvantages

Advantages

Transformation from UML subset to a
formal representation

Reduced inconsistency and
incorrectness 

•
•

•

•

•

•
•

•

•

Fig ur e 15.4
Comparison of inspections to formal verification for UML-based CM.
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rigorously and with structure and they are relatively less costly and they 
can be used at any phase of the development process. Hence, a systematic 
and holistic approach, rather than using formalisms, may provide significant 
practical results. In the following section, an appropriate inspection process 
is described to assure the quality of conceptual models in a notation derived 
from UML.

15.4.2 Desirable Properties for u Ml -based KAMA Notation

In this section, we describe the properties identified for a domain-specific 
notation for conceptual modeling, namely KAMA (Karagöz and Demirörs 
2007) (see Chapter 7 of this book for details about the notation). KAMA 
models are independent of the simulation environment, infrastructure 
and implementation. Since most syntactic properties of KAMA are reused 
from UML and can be eliminated through UML CASE tools, only desirable 
semantic properties are identified (Tanrıöver 2008) and presented in this 
chapter.

Briefly, class consistency, multiplicity consistency, relation and class 
liveness, consistency of inherited constraints, lack of transitive cycles, 
and lack of redundant relations are identified as desirable properties of 
the structural views. For example, “A class is consistent, if it can be pop-
ulated without violating any of the constraints in the diagram” (Berardi, 
Calvanese, and De Giacomo 2005). Liveness of tasks, deadlock freedom 
in task flows, lack of dangling tasks in task flows, and completeness and 
consistency of guard conditions are identified as desirable properties of 
the behavioral views.

Various interdiagram consistency issues have been considered in the 
literature (e.g., Ambler 2005, Briand, Labische, and O’Sullivan 2003, SD 
Metrics 2007, Killand and Borretzen 2001, Ohnishi, 2002). Interdiagram 
properties identified in the context of KAMA were mission versus task 
flow dependency, ontology versus subontology dependency, task flow ver-
sus sub-task flow dependency, mission and task flow refinement consis-
tency, refinement consistency of entities in task flow and entity ontology 
views, consistency of actor in mission space and organization views, and 
consistency of attributes in entity state and entity ontology views. Note 
that these properties are related to the most commonly used modeling ele-
ments and views.

15.4.3 An inspection Process

Inspection tasks for checking desirable properties are presented in this 
section in the order of execution. It should be noted that the inspection 
tasks, in general, may not identify all possible violations of an identified 
property. Properties of the structural perspective for example, can be only 
partly checked by the help of deficiency patterns presented in the following 
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subsection. However, we think that by the help of these inspection tasks, it 
will be possible to identify a set of semantic issues that would otherwise be 
left undetected. Many issues identified in the inspection process have to be 
checked for validity in the context of the specific conceptual model being 
developed.

15.4.3.1 Intradiagram Inspection

Structural diagrams inspection phase: In the structural diagram inspection 
phase, contradictions and redundancies in diagrams derived from UML 
class diagrams are checked. For structural diagram checks, a set of defi-
ciency patterns have been identified. All patterns have been validated 
with two modeling experts. Our aim was to provide examples and sim-
ply guide the inspector toward the types of structural deficiencies that 
we would like to identify. We have formulated patterns including two 
fundamental relations namely association and generalization. However, 
similar patterns may also be used for more specific, derived relations 
used in domain-specific notations. For example, “request” or “transacts 
with” relations used in business domains are subclasses of the association 
relation.

Our observation is that inconsistencies may occur because a view of the 
model may be represented in multiple diagrams connected with extension 
points or simply each diagram may represent the viewpoint of a stakeholder 
participating in the conceptual modeling process. Most contemporary CASE 
tools allow a given model element to appear in multiple diagrams. When the 
same model element is used in more than one diagram of the same view at 
the same abstraction level, contradictions and redundancies may be intro-
duced and remain undetected. Specifically, we observed that transitivity and 
asymmetry of derived relations in the domain-specific notation may cause 
redundancy or contradiction, because in domain-specific modeling the same 
type of relations may be used many times. For example, if we model sym-
metry by using an asymmetric relation (e.g., A → B and B → A) this may be 
the indication of a contradiction, and if we explicitly assert a relation that is 
already implied (e.g., A → B → C together with A → C), this will result in a 
redundancy.

The second observation is that conceptual models are developed in a 
sketchy manner, at a high level of abstraction early in the development life 
cycle. Hence, only basic modeling constructs such as classes and various 
relationships are used in the models at this phase. Furthermore, usually 
domain-specific notations allow only a limited number of types of relations 
and model elements in each diagram type. For this reason, a limited number 
of deficiency patterns can be helpful.

Figure 15.5 presents patterns mostly based on generalization type of rela-
tions and Figure 15.6 depicts patterns mostly based on association type of 
relations. Structural diagrams are entity ontology, command hierarchy, 
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entity-relation and mission space diagrams in KAMA notation. For check-
ing these diagrams, the inspector is presented with the deficiency patterns 
and their descriptions to familiarize him with the kind of defects he will 
be looking for. Table 15.1 summarizes the inspection tasks for structural 
diagrams.

Mission space diagram inspection phase: In this phase, diagrams derived 
from use case diagrams, i.e., KAMA mission space diagrams, are inspected. 
The tasks in Table 15.2 are used for the mission space diagram inspection 
phase.

Task flow diagram inspection phase: The purpose of this phase is to verify the 
diagrams derived from UML activity diagrams, i.e., KAMA task flow dia-
grams (Tanrıöver and Bilgen 2007a, b). The activities in Table 15.3 are defined 
for the task flow diagram inspection phase.

15.4.3.2 Interdiagram Inspection

In this phase the interdiagram properties are verified (Tanrıöver and Bilgen 
2007a, 2007b). For checking the interdiagram properties, we defined inspec-
tion tasks presented in Table 15.4. Note that tasks are not exhaustive; the lists 
may be augmented with newly identified properties pertaining to a specific 
modeling context.

TAble 15.1
Structural Diagram Inspection Phase

1.  Check syntactical errors such as omissions, missing attributes, and name clashes, based on 
the syntactic rules. 

2. Look for deficiency patterns in the class model.
2.1 Look for a match with each pattern for a contradiction or a redundancy. Consider the 

transitive closure of the relations for pattern matching.
2.2 Depending on the matched pattern validate the issue with the SME.

3.  Identify complex structures (structures with central classes participating in more than one 
relation and/or relationship type) not considered in task 2 by using the semantics of the 
modeling elements forming the structure.

TAble 15.2
Mission Space Diagram Inspection

1. Check syntactic errors such as duplicate names, dangling missions without actors.
2. Check for patterns 1.2 and 2.2 to identify contradictions. 
3. Check the < inclusion > and < extends > relations for semantically correct usage.

3.1 Trace and check the relation to the refining task flow diagram of the use case to make 
sure they are properly used.
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TAble 15.3

Task Flow Diagram Inspection Phase Tasks

1.  Check for syntactic errors such as dangling nodes, initial nodes with more than one 
outgoing transitions.

2. Identify decision nodes.

2.1 Check if all flows outgoing from the decision nodes have guards.

2.2 Check the constraints on the guards to make sure that they do not overlap (overlapping 
such as constraint on one guard is x > = 0 and on the other x = < 0).

2.3 Check if the guards define a complete set (such as x = > 0 and x < 0).

2.3.1 Identify overlapping and incomplete conditions.
3. Identify fork nodes.

3.1 Check if the fork node has only one entrance; if not, make sure that a task flow is not 
missed before the flow is joined.

3.2 Check if all the flows from the fork node are joined by a (same) join node 
(nonstructurally joined nodes or fork nodes may indicate concurrency problems).

3.2.1. If not, run the flows coming out of the fork node with UML’s activity diagram 
(Petri Nets–like) control flow semantics.

3.2.2. Identify livelocks and their causes.
4. Identify join nodes.

4.1 Check if join nodes have only one exit transitions.

4.2 If not, it is possible that the join node is placed too early; there is possibility that there is 
still a need for a parallel flow.

4.3 Trace incoming transitions of the join nodes to make sure that all may eventually be 
activated.

4.4 If not identify causes of deadlock.
5.  If the task flow is complex (includes more than one fork node or composite decision nodes) 

trace each flow from the start to end.

5.1 Make sure that every task may execute.

5.2 Identify dead tasks.
6. Trace the flows reaching the final nodes.

6.1 Make sure that they do not originate from a fork node.

6.2 If they do, there is a possibility that some activities will terminate abruptly, try to 
identify such activities.

7. Identify loops by tracing through transitions.

7.1 Run the localized loop with UML’s activity diagram (Petri Nets–like) control flow 
semantics.

7.2 Identify possible livelocks and their causes.
8. Identify activities with <input> and <output> entities.

8.1 Make sure that if tasks use outputs of one another, they also follow the implied 
sequence in the control flow because a produced entity may be an input for another 
task, causing the task to never start or to prevent parallel flow.

8.2 Identify deadlocks or redundancy.
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15.5 Case Studies

This section describes two case studies conducted to explore the applicabil-
ity and effectiveness of the inspection approach presented above.

15.5.1 Case Study 1

The first case study was an exploratory study. We had developed an  initial 
inspection process definition. The study aimed to test the applicability 
and to identify improvement possibilities for the initial version of the 
process.

TAble 15.4

Interdiagram Inspection Tasks

1.  Trace missions and check if they are modeled in task flow diagrams and vice a 
versa.

2.  Compare ontology diagrams with corresponding subontology diagrams and make 
sure that there is only one subontology diagram for an entity in the upper ontology 
diagram.

3.  Identify further decomposed tasks in task flow diagrams, make sure there is only 
one subtask flow diagram for a super task flow node.

4.  Identify <inputs>, <outputs>in nonleaf task flow diagrams.

4.1 Trace <inputs>, <outputs> in the next lower task flow diagram.

4.2 Ensure that there is at least one <input> and/or <output> attached to the next 
lower task flow and identify missing <inputs> and/or <outputs> for the next 
lower task flow diagram.

5.  Identify <input>, <outputs> entities in leaf task flow diagrams.

5.1 Trace <inputs>, <outputs> entities in the task flow in the upper task flow 
diagram.

5.2 Check if there is at least one <input> and/or <output> attached to the upper 
task flow and identify missing <inputs> and/or <outputs> in the leaf task flow.

6.  Identify extended missions.

6.1 Compare task flow diagrams of the mission with task flow diagram of the 
extended mission: the extended task flow diagram should be reachable by only 
extracting model elements from extending diagram.

7.  Check each <input> and <output> entity in task flow diagrams, a corresponding 
entity has to exist in ontology diagrams.

8.  Check all the actors in mission space diagrams are defined in organization 
diagrams.

9.  Check if variables used in state chart diagrams are defined attributes of 
corresponding entity.

10.  Check if operations used as transitions in entity state diagrams are defined in the 
corresponding entity diagram.
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15.5.1.1 The Setting

Three roles were identified for actors participating in the case study:

Modelers: Responsible for developing the conceptual model using the 
KAMA notation.

Inspector: Responsible for performing the inspection of the conceptual 
model developed.

Software Engineering Experts: Responsible for the defect approval and 
resolution in the inspection meeting.

Two modelers both experienced in UML modeling and KAMA notation had 
developed a conceptual model for a typical mission scenario. The concep-
tual model consisted of one mission space diagram, one command hierar-
chy diagram, five ontology diagrams, and 46 task flow diagrams at varying 
levels of structural decomposition with different levels of complexity and 
included a total of 179 model elements. The model was in its early stage of 
the CM development process (at the first iteration of three review stages) 
and was developed in a sketchy manner. For example, the entities did not 
include operations defined and any entity state diagrams. Hence during the 
inspection, only a set of the inspection tasks could be performed. Semantic 
checks with cardinalities for any of the structure diagrams were not nec-
essary because cardinalities were not used. Similarly, the consideration of 
entity state diagram related properties were also left out of the scope of the 
inspection.

The conceptual model inspection was conducted in two main phases. 
Review of the conceptual model had been already performed informally 
during conceptual model development phases by the two modelers. Our 
inspection process was performed after this review. The defect detection 
and reporting was conducted by an inspector. This phase took 20 person 
hours. After the defect detection phase, an inspection meeting for validating 
the defects detected was planned. The inspector, modeler and two software 
engineering experts participated in this six-hour meeting. The outputs of 
this process were the corrected conceptual model and the verification report. 
Main sources of evidence and data of inspection were defect detection docu-
mentation and minutes of the inspection meeting.

15.5.1.2 Conduct of the Case Study 1

Applying the inspection tasks in Table 15.1, we identified only seven issues 
because the allowed relationship types in structural diagrams are limited in 
KAMA notation and the model belonged to an early modeling phase. As an 
example, a redundancy on the command hierarchy diagram in Figure 15.7 
was identified. In command hierarchy diagrams sub/superior relation is a 
transitive relation derived from generalization metaclass of UML. When we 
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consider the “Brigade Assessment Center,” “Division Command Center,” 
and “National Command Center,” the sub/super relation between “National 
Command Center” and “Brigade Assessment Center” forms a semantic 
redundancy, by “redundancy by transitivity” pattern.

Performing the tasks in Table 15.2, we identified 10 issues, such as missing 
extended and included missions, etc.

Performing the task flow review activity in Table 15.3, 23 issues were iden-
tified. In the “Watch Mission Region” task flow in Figure 15.8, since the entity 
“Identification/recognition data” can be an input to the task “Locate Allied 
Forces” only after being produced by “Search the Region” task, the fork node 
at the start has no effect on the flow. This has been identified by task 8 of 
Table 15.3. On the other hand, in “Develop Pointer Information” task flow, 
since the flows coming out of the fork node terminate with a decision node 
without a merge node, either of the tasks may terminate abruptly leaving 
dangling flows. This is an issue identified by task 6 of Table 15.3.

Furthermore, the interdiagram inspection tasks in Table 15.4 were per-
formed and 29 issues were identified. For instance, by task 1 of Table 15.4, we 
identified nine entities used in task flow diagrams but not defined in ontol-
ogy diagrams. According to refinement consistency, a subtask flow should 
show main task flow entities in higher or at least equivalent level of detail. As 
an example, consider the models in Figure 15.8. “Develop Communication 
Information” task flow is a sub-task flow of “Develop Pointer Information.” 
However, although the output entity “Communication Intelligence 
Data” exists in “Develop Pointer Information” main task flow, associated 
or refining entities are not shown at all in “Compose Communication 
Intelligence” sub-task flow. By task 4 of Table 15.4, this has been identified 
as incompleteness.

National command
center

Division command
center

Brigade assessment
center

Tactic prediction facility

Battalion command
center

Station command tool

<sub/sup>

<sub/sup>

<sub/sup>

<sub/sup>

<sub/sup>
<sub/sup>

Fig ur e 15.7
KAMA command hierarchy diagram with redundancy.
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15.5.1.3 Discussion and Findings of Case Study 1

The defect detection phase of the inspection performed resulted in eighty-
five identified issues. Ten of them were categorized as belonging to the 
major, seven of them to the moderate, and 68 of them to the minor levels 
of severity. An example of major issues was semantic deadlocks in the task 
flow diagrams and expert opinion was used for validation of the issues iden-
tified in the inspection. For this purpose, an inspection (six hours) meet-
ing was held after the defect detection phase. The inspector, modeler, and 
two software engineering experts participated in the meeting. They agreed 
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Fig ur e 15.8
KAMA task flow diagram examples.
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that, although some of the 85 issues signaled minor problems and some of 
them were not definitive defects, 39 of the identified issues included behav-
ioral defects and were qualified as subtle and not easily detectable in ad hoc 
reviews. Seventeen of these issues were agreed to be definitive defects and 
22 issues were identified as definitive incompleteness. They also agreed that 
these types of redundancies and contradictions are not easy to detect and 
deficiency patterns could help the inspectors to detect requirements related 
issues.

15.5.2 Case Study 2

The purpose of the second case study was to explore and evaluate the effec-
tiveness of the improved inspection process.

15.5.2.1 The Setting

A similar inspection organization as in the first case study was used. 
However, the conceptual model used in this study was developed in a real 
life development environment. The model in case study 2 had already been 
subject to ad hoc review for two days by one UML expert. Also, a review 
meeting with the participation of six members of the development team was 
held. Later on, the conceptual model was subjected to a walkthrough that 
took five days. Four engineers from the conceptual model development team 
and three from the acquirer organization joined the meetings in this third 
phase. There were 150 issues identified. The issues identified were related 
mostly with validation. These were issues with task flow diagrams, incom-
pleteness regarding entities, additional attributes and capabilities to the enti-
ties, definition of roles and actors. Our inspection-based verification was 
applied after all these three review activities were realized.

15.5.2.2 Conduct of the Case Study 2

Before each intradiagram inspection, the validation function of Enterprise 
Architect v6.5 (2006) (EA v6.5) was executed on each diagram. The tool’s stan-
dard validation function, which included syntactic, wff, and other checks, 
signaled no errors. Then, the inspection tasks were performed. During the 
inspection the model tree browser was used and helped the inspector to 
manage the browsing (which may sometimes be rather complex) needed for 
interdiagram verification tasks. The facility of the EA 6.5 tool to view the 
class hierarchy tree was used to obtain all the lower-level entities transitively 
based on both aggregation and generalization relations. During the inspec-
tion of refinement relations, starting from the highest level, only the first sub 
level was checked when inspecting a given task flow diagram.

There were a few defects that were detected based on structural defi-
ciency patterns. As an example, Figure 15.9 shows an occurrence of 
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the multiple inheritance pattern, as “extends” is a generalization type 
of relation. Note that, although the definition of the patterns is not for-
mally given and use case patterns are not explicitly defined, this pattern 
could be identified as a structural issue by the inspector. This example 
shows that with the guidance of patterns initially presented, the inspec-
tors easily identify similar  deficiencies that were not previously formally 
specified.

15.5.2.3 Findings of the Case Study 2

As mentioned earlier, the conceptual model had gone through ad hoc 
review and walkthroughs conducted by inspectors. Inspectors were expe-
rienced in both UML and the domain. During this process 150 semantic 
and syntactic issues had already been identified and corrected. Even though 
the conceptual model was corrected and accepted to be valid, by applying 
our approach later, 58 additional semantic issues were identified. Thirty of 
these were acknowledged to be nontrivial and to have important implica-
tions by the inspectors. It was determined that spending the extra effort 
on applying the described inspection process after an ad hoc review was 
clearly worthwhile.

One important observation in the case study was that the model tree 
browser of the EA 6.5 tool proved to be very helpful for interdiagram verifi-
cation tasks. The interdiagram inspection tasks were performed not as stand-
alone activities but rather just after finishing the intradiagram inspection 
for that diagram. Thus, once a perspective is inspected, all the tasks related 
to that perspective were performed. This slight adaptation of the process 
has improved the inspection effectiveness, because in this way the inspector 
does not have to consider the same diagram twice for inter-view and intra-
view tasks.

15.6 Conclusions and Further Research

In this chapter, we have reviewed the literature on conceptual model vali-
dation and verification based on UML and presented an inspection pro-
cess for conceptual models developed with a UML-based notation. The 
literature review first showed that, for UML-based models, there is not 
an agreed set of desirable properties, which may be identified depend-
ing on the purpose, development methodology and domain of modeling. 
Second, formal approaches and existing tools are either partial or can-
not be practically used to reveal semantic issues during conceptual model 
verification.
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We have presented an inspection process with tasks for different types 
of diagrams together with interdiagram properties. The set of properties 
and tasks can be augmented, depending on the intended purpose of the 
conceptual model, hence the AC. The set of desirable properties considered 
in this work have been determined specifically for high-level conceptual 
models. The inspection tasks for semantic properties are detailed, whereas 
many of the syntactic errors and simple interdiagram consistency checks 
can be eliminated through CASE tools. Through case studies, the process 
was shown to be effective in identifying semantic issues that may not 
be detected by the contemporary UML CASE tools and other inspection 
methods.

Tool support for the inspection process has not been considered. A single 
tool will not be enough to support the verification tasks but rather a set of 
tools should be identified. In general, environments such as Meta Edit, Open 
Architecture-ware and GME can be used to check properties related to syn-
tax and simple consistency rules of the domain-specific notation. For task 
flow inspections, Petri Net analysis tools may be helpful if the view is too 
complex and critical. We also foresee that for structural view verification 
tasks ontology analysis tools such as extended entity relationship (EER)-
conceptual (Compatangelo and Meise 2002) may be very helpful. However, 
in conceptual modeling, human comprehension is the essential aim, and 
tractable abstraction levels and sizes must be goals. Hence, it may be more 
appropriate and also more cost effective to integrate the verification tasks 
with the validation tasks that require human interpretation.

Another possible criticism that can be directed at the presented inspection 
approach is the lack of a risk perspective. To make sure that a conceptual 
model is fit for purpose in a cost effective way, V&V activities have to be 
focused on the most important aspects of the conceptual model.

Specifically, the modeling and simulation community has long acknowl-
edged the need for a risk-based V&V process (e.g., Brade 2004, REVVAI/II 
and GMVVA [Generic Methodology for VV&A]). Work toward assessing and 
possibly enhancing the presented approach from a risk-driven perspective 
is outstanding.

We recognize that not all the semantic issues may be revealed, since only a 
set of common defects patterns are provided. On the other hand, for behav-
ioral diagrams, we only guide the inspector by means of inspection tasks to 
facilitate identifying defects due to desirable properties. Especially when the 
number and complexity of diagrams participating in refinement or depen-
dency relations increase, inspection of interdiagram properties becomes dif-
ficult. Hence, to what extent the approach is applicable to large scale complex 
models still needs further investigation. However, as conceptual models are 
incrementally developed, applying the proposed inspection process in each 
iteration will definitely help remove defects and result in increased model 
quality.
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16
Conceptual Modeling Evolution within US 
Defense Communities: The View from the 
Simulation Interoperability Workshop

Dale K. Pace

16.1 Introduction

Simulation-related conceptual modeling is a challenging and complex topic. 
Insights can be gained about factors influencing development of conceptual 
modeling ideas by examining the continuing evolution of simulation-related 
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conceptual modeling and the approaches used in various communities. Why 
different simulation communities have addressed this topic in such varied 
ways often becomes much clearer from a consideration of conceptual model-
ing history.

This chapter provides historical perspective on the evolution of simula-
tion-related conceptual modeling within the US military and defense sim-
ulation communities.* Simulation-related conceptual modeling in the US 
military and Department of Defense (DoD) has been influenced strongly by 
efforts initiated or directed by the Defense Modeling and Simulation Office 
(DMSO), an organization that began in 1991 and evolved into the Modeling 
and Simulation Coordination Office (M&S CO) about 2006. Much, but not 
all, of DMSO’s conceptual modeling influence manifested itself within the 
Simulation Interoperability Standards Organization (SISO).

SISO originated with a small conference held April 26 and 27, 1989, called 
Interactive Networked Simulation for Training. The group was concerned that 
activity occurring in networked simulation was occurring in isolation. They 
believed a means to exchange information between companies and groups 
would enable networked simulation technology to advance more rapidly. Once 
the technology began to stabilize and mature, there would be a need for stan-
dardization to capture technology and community consensus. The conferences 
soon developed into the Distributed Interactive Simulation (DIS) Workshops. 
They focused on creating standards based on the major project SIMNET, which 
was established as the baseline standard in the early 1990s. In late 1996, in light 
of the development of the high level architecture (HLA), the DIS organization 
transformed itself into a more functional organization called SISO.

The SISO Simulation Interoperability Workshop (SIW), in its forums at the 
semi-annual workshops and by interactions among participants throughout 
the year, is where many of the ideas, concepts, and interoperability processes 
for HLA simulations were thrashed out. SIW is also where many conceptual 
modeling ideas were presented and refined by the varied perspectives of 
the different simulation communities represented. Some of DMSO’s concep-
tual modeling ideas were discussed within the semi-annual DIS Workshops 
before SIW began in 1996. Such conceptual modeling discussions, which 
continued in SIW as well as with others outside SIW, helped to clarify and 
vet conceptual modeling ideas being developed by DMSO endeavors.

For the past two decades, the main SISO conferences (first DIS and then 
SIW) have met twice a year. Typically at each of these meetings, more than a 
hundred papers will be presented in addition to the work performed within 
the groups and forums of the conference to draft, review, and revise guid-
ance being developed through SISO. These main conferences have been 
supported by active email interchanges among participants and by a large 
number of ancillary meetings of groups and forums as they grapple with 
technical issues being addressed. Since 2001 there has also been an annual 

* A glossary at the end of the chapter lists acronyms used in the chapter.
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European SIW (with 25–100 presentations) whose papers and discussions are 
fully integrated into SISO.

Three main streams of conceptual modeling stimulated by DMSO/M&S 
CO have interacted with one another, both within SIW and elsewhere, some-
times in competitive ways and sometimes broadening and honing ideas and 
concepts for all. One stream is the Conceptual Model of the Mission Space 
(CMMS), later renamed Functional Description of the Mission Space (FDMS). 
A second stream is simulation conceptual modeling (SCM) as expressed in 
the DoD Recommended Practices Guide (RPG) for modeling and simulation 
(M&S) verification, validation, and accreditation (VV&A). The third stream is 
development of the Federation Conceptual Model (FCM), a conceptual model 
for a collection of simulation applications working in concert as embodied in 
the DMSO HLA Federation Development and Execution Process (FEDEP).*

This chapter focuses (1) on simulation-related conceptual modeling ideas 
reflected by these three streams, most of which were discussed extensively 
within SIW, and (2) on where simulation-related conceptual modeling ideas 
are within the simulation communities of SIW in early 2009. Even though it 
causes a bit of repetition in the chapter, development of conceptual model-
ing ideas in each of these three streams is treated individually. Then how 
they merge is discussed. Some of the material mentioned in the following 
background section presage points that are addressed more fully later in 
the chapter. Material is presented in this way for reader convenience. It 
allows each of the chapter sections to be coherent without dependence upon 
 material in the other sections of the chapter.

The next section of this chapter presents historical background about SCM 
evolution within US Defense communities. The section after that addresses 
conceptual model implications of the application context. Then a section will 
examine the parallel approaches to  conceptual modeling by the RPG and 
the FEDEP. That is followed by a section that considers what has been done 
in the SIW Simulation Conceptual Modeling Study Group (SCM SG) and its 
evolution into a SIW Standing Study Group (SSG). A number of persistent 
problems related to conceptual modeling are identified and discussed before 
conclusions and final comments are presented.

16.2 Historical Background

Prior to initiation in the mid-1990s of the three streams mentioned above, 
the classical approach to problem solving used in science, engineering, and 

* In HLA parlance, a federate is a single simulation and a federation is a collection of simulations 
(federates) working together. Various terms have been applied to such collections of simula-
tions working together: networked simulations, distributed simulations, and advanced dis-
tributed simulations, as well as federations.
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business since long before the days of computer simulation was the basis for 
development of most simulations within the US military and Defense com-
munity. This approach involved five basic steps:

 1. Identify/specify what is to be accomplished. This is done through 
objectives, requirements, goals, problem definition, etc.

 2. Plan the approach to accomplish the objectives. This is done 
through conceptual analysis, conceptual modeling, design of the 
approach, etc.

 3. Implement the planned approach by coding the program, building 
the device, etc.

 4. Test, then correct/modify/improve, and demonstrate the imple-
mented approach accomplishes the objectives. This involves the 
disciplines of verification and validation (V&V), test and evaluation 
(T&E), etc.

 5. Use the implemented approach to accomplish objectives.

Formal processes were not used widely for simulation-related conceptual 
modeling within the US military or Defense community before the mid-
1990s, even though the idea of the conceptual model as the connecting link 
between the reality to be simulated and the computerized model had been 
noted in various simulation paradigms. One of the best known of such para-
digms is the “Sargent Circle,” which was developed in the 1970s by Dr. Robert 
Sargent of Syracuse University. The paradigm showed where V&V fit in the 
simulation development and use process (Schlesinger 1979). This  paradigm 
is still cited by various V&V guides for simulation today (e.g., AIAA 1998, 
ASME 2006).

It was understood that a conceptual model (whether named as such or not) 
underlay and led to simulation design and implementation; however, only 
rarely before the mid-1990s was a simulation-related conceptual model explic-
itly and completely defined or documented. In addition, at that time there 
was no general agreement about what items and processes were involved in 
a simulation-related conceptual model. Consequently, it was difficult in most 
cases to perform either conceptual validation of simulation designs or vali-
dation assessments of simulations for conditions not tested specifically. This 
severely limited simulation credibility and utility. Modification and evolution 
of a simulation often ran into unnecessary problems because of lack of infor-
mation about assumptions, processes, limitations, and algorithms of the con-
ceptual model upon which the simulation had been built. As a result, much 
of the motivation and discussion of simulation-related conceptual modeling 
has come from simulation VV&A practitioners since conceptual modeling 
has such a major impact on simulation VV&A. In SIW, prior to establishment 
of the Conceptual Model Study Group in 2003 (see section 16.5), many of the 
conceptual modeling papers and presentations were in the VV&A Forum.
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During the late-1980s, a number of significant criticisms were made of 
M&S in the US military and DoD by the Defense Science Board (DSB), 
Government Accounting Office (GAO), and other responsible parties. 
This coupled with growing appreciation for the potential value of M&S 
in Defense led Assistant Secretary for Force Management and Personnel 
Christopher Jehn and Defense Director of Research and Engineering 
Charles Herzfeld to sponsor a Simulation Policy Study in 1990, which 
was led by retired Army General Paul Gorman. The study recommended 
that DoD establish a M&S organization to look across the military ser-
vices with the objective of reducing duplication of effort and facilitating 
interoperability. In June of the following year (1991), DMSO* was estab-
lished in response to the Defense Simulation Policy Study recommenda-
tions and Army COL Ed Fitzsimmons, who had been Executive Secretary 
of the Defense Simulation Policy Study, was appointed as the first DMSO 
Director.

DMSO’s early efforts focused on creating a DoD M&S strategy that would 
reduce duplication of M&S effort within DoD and facilitate M&S interoper-
ability. The strategy developed built upon a three part common technical 
framework. The parts of the common technical framework were (1) HLA to 
enable more substantive M&S interoperability, especially for military and 
Defense simulation, (2) CMMS† to provide a common world view, and (3) 
data standards (DoD M&S Master Plan 1995). In addition, the DoD M&S 
Master Plan also emphasized M&S VV&A as part of the M&S infrastructure 
needed to improve M&S credibility.

As part of DMSO’s common technical framework, CMMS was given a 
great deal of attention. “Conceptual Models of the Mission Space (CMMS) 
are a first abstraction of the real world activities associated with a particular 
mission area. Such conceptual models provide an entities, actions, tasks, and 
interactions (EATI) representation of the military mission space” (Hollenbach 
and Alexander 1997). By its emphasis upon more extensive employment of 
knowledge engineering techniques than was normally used in Defense 
simulation development, CMMS sought to provide (Sheehan et al. 1998) the 
following:

A disciplined procedure to systematically acquire knowledge•	
A set of information standards•	

* In 2006, in conjunction with realignment of various responsibilities among DoD organi-
zations, DMSO evolved into the Modeling and Simulation Coordination Office (M&S CO) 
which has similar but not identical responsibilities to those which DMSO had previously.

† About 2000, the term CMMS was replaced by the term Functional Description of the Mission 
Space (FDMS), which had the same meaning as CMMS, in order to emphasize the functional 
(vice “conceptual”) nature of the simulations (as desired by the operational community). This 
also reduced confusion between FDMS and “conceptual model,” whether conceptual model 
was applied to a single simulation (federate) or to a collection of simulations functioning 
together as a federation in a distributed simulation.
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A decomposition of real-world, military operations•	
A singular means for establishing reuse opportunities•	
A library of reusable conceptual mission space models•	

By the late 1990s, there was considerable confusion about conceptual models 
as they pertain to simulation. There were four main reasons for the con-
fusion. First was use of the words conceptual model in CMMS, which was 
concerned with abstraction of a military mission space from authoritative 
sources in EATI terms. Second was the idea of the conceptual model as the 
link between simulation requirements and design, as it was being developed 
for the Web-based Recommended Practices Guide (RPG) for M&S VV&A by a 
team under DMSO direction. Third was the conceptual model idea being 
developed for the FEDEP to standardize development processes for HLA 
federations because it was realized that although the Federation Object 
Model (FOM) could ensure communication compatibility within the federa-
tion, it did not ensure representational compatibility among the federates. 
The FCM became the mechanism to ensure representational compatibility 
within a federation. All three of these simulation-related conceptual model 
ideas were percolating within the DMSO and SIW* communities. Fourth, in 
addition, other ideas about conceptual modeling, such as the database-ori-
ented ones associated with the Journal of Conceptual Modeling, were also being 
communicated and discussed. This confusing variety of connotations for the 
term conceptual model continues to this day (Druid et al. 2006). Resolution of 
the differences in connotations for simulation-related conceptual modeling 
becomes easier when  application context is brought into the picture, as will 
be done later in this chapter.

Timelines can provide perspective on conceptual modeling related to simu-
lation, at least within the US military arena. All work under DMSO direction 
was oriented primarily toward simulation by or for US Defense communities. 
HLA had been directed by senior DoD leadership to be the architecture for 
distributed simulation within DoD (Kaminski 1996). Work on CMMS began 
in the mid-1990s, and as noted earlier the name changed to FDMS about 
2000 but the concept stayed the same. The CMMS/FDMS idea was migrat-
ing to the Knowledge Integration Resource Center (KIRC) about 2002, which 
seems to have been where FDMS went after trying to integrate FDMS with 
the Defense Modeling and Simulation Resource Center. Personnel changes 
and funding decreases caused the DMSO-sponsored CMMS/FDMS effort 
to atrophy. The most substantial continuation of the FDMS idea directly 
seems to have been done at the Swedish Defense Research Agency (FOI). 
Their evolution of the FDMS idea is called the Defence Conceptual Modeling 
Framework (DCMF) (Kabilan and Mojtahed 2006).

* SIW is the primary venue where various parts of IEEE Standard 1516 relative to HLA imple-
mentations were developed prior to their balloting for acceptance as an IEEE standard.
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The basic idea that CMMS/FDMS developed of providing an authoritative 
description of the military application domain for a simulation with identi-
fication and description of the entities, processes, and interactions (the EATI 
construct) has been generalized in what is called domain modeling. In software 
engineering, domain modeling has been very helpful in facilitating software 
reuse. “By systematically representing (or modeling) the functions, objects, 
data, and relationships of applications in the domain, domain modeling is 
used to define what the applications are, what the applications do, and how 
the applications work” (Krut and Zahman 1996).

The FCM idea that had appeared in Version 1.5 of the DMSO HLA 
FEDEP in late-1999 (DMSO 1999) became codified in 2003 with adoption of 
IEEE Standard 1516.3-2003 Recommended Practice for High Level Architecture 
Federation Development and Execution Process (FEDEP).* It is expected 
that the systems engineering approach embodied in the FEDEP may be 
expanded in scope beyond HLA implementations and given a new name, 
Distributed Simulation Engineering and Execution Process (DSEEP), with 
a new IEEE standard number (1730) if it should progress to the status of an 
IEEE standard.

The first edition of the DoD Recommended Practice Guide (RPG) for M&S 
VV&A was published in 1996. It was well received, and shortly thereafter 
plans were made to upgrade the RPG and make it available in a Web-based 
format. In 1998, Simone Youngblood,† the DMSO Technical Director for 
VV&A, assembled a team to develop the Web-based Millennium Edition 
of the RPG. Many of the ideas for materials that would be included in 
the RPG were presented and discussed at SIW‡ and Society for Computer 
Simulation International (SCS) conferences. The special topic on simulation 
conceptual models in the Millennium Edition (Build 1) of the RPG (2000) 
focused on new simulation developments. The next revision (Build 2) to 
the RPG (2001) expanded conceptual modeling discussion to include leg-
acy simulations. The current (Build 3) version of the RPG (2006) addresses 
conceptual modeling both for new simulation developments or modifica-
tions, and for legacy simulations developed without explicit conceptual 
models.

In the spring of 2003, another element entered the conceptual modeling 
fray at SIW. At the Spring SIW, a SCM SG led by Jake Borah was formed “to 
conduct preliminary investigation on the best practices of SCM and to estab-
lish recommendations for pursuit of the topic within the scope of the SISO, 
if appropriate.”

* The FEDEP extends beyond US military simulation since it is the subject of a NATO standard-
ization agreement, STANAG 4603: Modeling and Simulation Architecture Standards for Technical 
Interoperability: High Level Architecture (HLA).

† Simone Youngblood also has chaired the SIW VV&A Forum since SIW began. Previously she 
had been an active participant in DIS VV&A activities.

‡ From 2001 on, “SIW” is used for both the SIW sessions in the US and the Euro SIW sessions.
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16.3  Conceptual Model Characteristics and 
Application Context

What is a conceptual model? As noted earlier, CMMS is the “first abstrac-
tion of the real world activities associated with a particular mission area” 
(Hollenbach and Alexander 1997). Mojtahed et al. (2005) in their elabora-
tion of CMMS/FDMS into the Defence Conceptual Modeling Framework 
(DCMF) for the Swedish Defence Research Agency (FOI) “summarise a defi-
nition of conceptual models in the context of computer information systems 
as: Conceptual models are abstractions of a real world domain of discourse. They 
are intended to capture the semantics, pragmatics and to an extent the syntactic of 
the domain being modelled.” The CMMS, FDMS, and DCMF concept for a con-
ceptual model is relatively independent of the  simulation application. This 
characteristic of CMMS was recognized early (Lewis and Coe 1997). In this 
regard, CMMS/FDMS/DCMF is akin to ideals in the Journal of Conceptual 
Modeling, which are concerned with data, modeling, design, and implemen-
tation issues related to databases.

For other definitions of simulation-related conceptual models, simulation 
application context has a significant impact on conceptual model connotation. 
This will be illustrated for DIS, for simulation conceptual models, and for 
FEDEP FCMs. Application context also impacts simulation implementation 
independence. Implementation independence is generally considered to be a 
positive attribute for a conceptual model since it enhances reuse potential of 
the conceptual model or its parts. The closer to simulation design one comes, 
the less implementation independence the conceptual model can have.

In DIS communities of the early 1990s, conceptual model referred to the 
agreement between the simulation developer and user about what the simu-
lation was to do (Pace 2000). Later the DIS glossary definition for  conceptual 
model became, “A statement of the content and internal representations 
which are the developer’s concept of the model. It includes logic and algo-
rithms and explicitly recognizes assumptions and limitations” (DIS 1995). 
The current description of simulation conceptual model in the RPG follows 
this approach.

The VV&A Recommended Practices Guide (RPG Build 3 2006) says, “A simu-
lation conceptual model is frequently described as the bridge between the 
Developer and the User. It serves as a primary mechanism for clear commu-
nication among simulation development personnel (e.g., software  designers, 
code developers, system engineers, system analysts) and members of the user 
community (e.g., Users, functional area subject matter experts [SMEs],  testers, 
V&V Agents, Accreditation Agents).” For new simulations or simulation 
 modifications, the simulation conceptual model is driven by M&S require-
ments. The simulation conceptual model encompasses all M&S requirements 
so that specifications (i.e., the detailed guidance upon which M&S design is 
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based) for the M&S development or modification may be developed from the 
conceptual model. This kind of conceptual model  permits a simulation design 
that fully captures the M&S requirements so that the  simulation will have 
the capability to satisfy simulation objectives in its intended applications.

For a legacy simulation that was constructed without an explicit concep-
tual model, the simulation conceptual model has a different function. It uses 
a full description of the M&S implementation to create the simulation con-
ceptual model so that assessments of the appropriateness (or limitations) of 
M&S applications may be determined from the simulation conceptual model 
for situations that are not tested directly. For such a legacy simulation, the 
simulation conceptual model provides a solid basis for decisions about mod-
ifications to the simulation.

Figure 16.1 from the RPG illustrates these two perspectives on simulation 
conceptual models, one for new simulations or simulation modifications, and 
the other for legacy simulations developed without an explicit conceptual 
model. As shown in Figure 16.1, the simulation conceptual model has three 
primary components: the simulation context, the mission space, and the sim-
ulation space. “The simulation context provides authoritative information 
about the user and problem domains to be addressed in the simulation based 
on the M&S requirements of the intended application” (RPG Build 3 2006). 
Thus, most of the CMMS/FDMS information pertinent to a  simulation as the 
“first abstraction of the real world” becomes part of the simulation  context 
in the RPG simulation conceptual model. This information establishes 

M&S requirements

Legacy M&S
implementation

(1) Simulation context (1) Simulation concept

Simulation elements

Operational/functional capabilities

Note: legacy simulation conceptual models focus on (2) mission space

Constraints

(2) Mission space

(2) Simulation space

Sets the constraints/bounds on
the simulation concept

Entities/processes (tasks, actions,
behaviors, etc.) represented by
assumptions, algorithms, data,
and relationships (architecture)

Authoritative information re:
relevant entities/processes,
data, algorithms, assumptions,
behaviors, etc. and possibly
identification of information
sources used in the referent

M&S application appropriateness

M&S development
and modification
specifications Results in

Lead to

Conceptual model

Fig ur e 16.1
Simulation conceptual model components.
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constraints and boundary conditions for the simulation concept that guides 
articulation of the detailed specifications that focus the simulation design.

In early discussions of the RPG simulation conceptual model, questions 
were raised about the need for both mission space and simulation space parts of 
the conceptual model. It was decided that it would be very helpful to sepa-
rate the representational aspects of the conceptual model (i.e., the mission 
space) from those aspects of the conceptual model concerned with simulation 
implementation (i.e., the simulation space). This separation of representational 
aspects of the conceptual model from implementation aspects (such as being 
required to run on particular hardware or operating systems, run in real-time 
or some multiple of real-time, support particular kinds of display systems, 
etc.) has proved very helpful, especially when representational compatibil-
ity of various simulations (federates) to be used in a distributed simulation 
 (federation) has to be assessed. It permits focus on representational issues: 
what level of resolution and accuracy is expected from the representation, 
what elements are treated explicitly within the conceptual model, what are 
the assumptions and pedigrees of the algorithms selected, etc.

In the spirit of maximizing implementation independence of the concep-
tual model, the simulation space is restricted to implementation implications 
from the requirements that the simulation must satisfy. Other implementa-
tion decisions about the simulation are left to simulation design and are not 
part of the simulation conceptual model; although in practice simulation con-
ceptual models often have design elements included in them beyond what 
is essential to satisfy M&S requirements fully. Obviously the kind of simula-
tion (live, virtual, or constructive)* as well as the amount of implementation 
related requirements will have major impacts on the extent of material in the 
simulation space portion of the simulation conceptual model.

In diagrams of earlier versions of the FEDEP (HLA versions 1.x prior to 
publication in IEEE Std 1516.3) (Lutz 2003), there seemed to be a significant 
difference in connotation for the FCM and the simulation conceptual model 
of the RPG because the FCM came before federation requirements and drove 
them in a sense, whereas the simulation conceptual model of the RPG comes 
after simulation requirements and is driven by them. However, the differ-
ence was only apparent and not a real difference in substance. The apparent 
difference arose because the FEDEP used the term “federation objectives” 
(which preceded the FCM and drove it as input to it) in the way that the RPG 
used “M&S requirements” (which drive the simulation conceptual model). 
The FEDEP used the term “federation requirements” (which followed the 
FCM and were shown in “old FEDEP” diagrams as an output from the FCM) 

* In the early mid 1990s, US defense simulation communities began to use the terms live, virtual, 
and constructive to indicate aspects of simulation implementation. Live meant actual military 
forces and systems such as tanks, aircraft, ships, and personnel were involved in the simula-
tion. Virtual meant simulators such as the simulators used to train aircraft or tank crews were 
involved in the simulation. Constructive meant the simulation was contained completely in 
computer code and did not involve either real systems or simulators.
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in the way that the RPG used “M&S specifications” (the detailed informa-
tion that enables a simulation design to be developed that fully satisfies M&S 
requirements).

The current version of the FEDEP (in IEEE Standard 1516.3-2003) removes 
the “apparent” difference by having conceptual analysis that is driven by 
federation objectives lead to the FCM, which in turn leads to federation 
design. “Federation requirements” come out of conceptual analysis in paral-
lel to the conceptual model and drive assessment of federation results. This 
makes the conceptual model connotations for the simulation conceptual 
model (oriented toward federates) compatible with the connotation for the 
FCM, which addresses a collection of federates used together in a federation. 
The conceptual model in the FEDEP is a description of “what the [simulation 
or federation] will represent, the assumptions limiting those representations, 
and other capabilities needed to satisfy the user’s requirements” (IEEE Std 
1516.3-2003).

The basic function of the simulation-related conceptual model has been 
clearly identified as (1) the link between objectives/requirements and sim-
ulation specifications/design and (2) a vehicle for effective communication 
among the various simulation stakeholders and other interested parties. 
This is true both for individual simulations (federates) and for combinations 
of simulations (federations).

Conceptual modeling issues identified below, which need consideration 
once simulation-related conceptual modeling functions are established, will 
be addressed later in this chapter:

What information should a conceptual model contain?•	
How should a conceptual model be described and documented?•	
How can a conceptual model be developed effectively and efficiently?•	

16.4  Parallel Paths: RPG Simulation Conceptual Model and 
FEDEP Federation Conceptual Model (FCM)

This section of the chapter explains why conceptual model guidance devel-
oped under DMSO leadership lacked the specific details many desired. The 
section then addresses conceptual model functions, content, and documen-
tation format.

16.4.1 u nmet Desire for a Prescriptive Approach

From the mid-1990s when DMSO-sponsored conceptual modeling work 
began to the present, discussions within SIW (and elsewhere) of ideas leading 
to the RPG description of a conceptual model and the FCM criticized the lack 
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of detailed specific guidance about conceptual model development, content, 
and format. A more prescriptive approach than the descriptive approach of 
the RPG and FEDEP was desired.

How does a prescriptive approach differ from descriptive approaches used in 
the RPG and the FEDEP? A prescriptive approach provides a specific list of 
things a conceptual model must do and items it must document; a descriptive 
approach provides general guidance about what a conceptual model should 
do and an example list of items it should document. A prescriptive approach 
specifies the content, format, and detailed structure of the conceptual model 
and its documentation; a descriptive approach permits leeway regarding such.

Numerous suggestions were made about how simulation-related concep-
tual modeling guidance could become more prescriptive. Some proposed 
use of Zeigler’s Discrete Event System Specification (DEVS) (Zeigler 1999). 
A number of people suggested use of Unified Modeling Language (UML) 
constructs. There were other ideas also, many of which were based upon 
knowledge engineering precepts.

The importance and potential value of a prescriptive approach were rec-
ognized and not disputed. A prescriptive approach is more likely to cause 
a conceptual model to be developed that conforms fully to the guidance for 
it. Thus, a prescriptive approach tends to improve the quality of items devel-
oped using it as well as improving the efficiency with which an item can be 
developed (i.e., reducing resources required to develop a conceptual model 
and facilitating reuse). However, the team developing simulation conceptual 
model material for the RPG concluded that the variety of simulations and 
their applications that the RPG was intended to support were too great for a 
prescriptive approach that could be applied broadly enough to be viable, and 
therefore pursued the descriptive approach found in the RPG.

US military and Defense simulations run the gamut from detailed science 
and engineering simulations used for trade studies in weapon system design 
and exploration of fundamental physical, chemical, and biological phenom-
ena to highly aggregated simulations supporting Defense policy analyses 
and senior commander war games. The Defense community also uses a full 
spectrum of business simulations to support DoD financial and personnel 
planning. Simulations address logistical systems for office and business sup-
plies as well as for movement of troops and materiel. Defense M&S support 
medical resource requirements estimations in plans for various military 
operations. Defense simulations might be live involving actual personnel 
and systems, virtual using training simulators, or constructive simply within 
a computer. Defense simulation-related conceptual modeling guidance is 
intended to support the full spectrum of Defense simulation, and therefore 
cannot be prescriptive as might be possible for simulations within a narrow 
application domain.

In recent years, much of the continuing desire for more prescriptive 
approaches to simulation-related conceptual models seems to be driven by 
hope of automating aspects of conceptual model development. Significant 
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progress has been made in automating some aspects of conceptual model 
development since early visions of automating simulation model genera-
tion, such as put forth by Mayer and Young (1984). Much of the progress 
in automating aspects of conceptual model development come from using 
tools developed mainly for other simulation or software activities, such 
as applying process modeling tools to conceptual modeling (Heavey and 
Ryan 2006). The greatest progress has been made for restricted applica-
tion domains, such as illustrated by US Air Force and NASA applications 
of the Adaptive Modeling Language (AML) (Blair and Love 2002, NASA 
Tech Briefs 2006), and in describing conceptual models in simulation devel-
opment paradigms such as UML (Tanriover and Bilgen 2007), It is hoped 
that such progress will continue, and the spectrum of applications to which 
such automation may be applied will increase. However, the scope of US 
 military and Defense simulation still prevents a prescriptive approach to 
 simulation-related conceptual model development that can apply to all 
varieties of Defense simulation. Table 16.1 indicates some of the simulation 
varieties and diversities that prevent use of a prescriptive approach to con-
ceptual model development.

TAble 16.1

Selected Defense Simulation Varieties and Diversities

Characteristic One Extreme Another Extreme

Time/Progress Method Continuous Simulation Discrete-Event Simulation
Facility/Run-time 
Constraints

“Live” with military systems 
& people in the loop that 
must be run in real-time

Computer-code only simulation 
with no run-time constraints

Level of Detail/
Aggregation

First principle physics code Simulation with aggregate 
representation of large (theater 
level) military forces

Simulation Application 
Domain

Simulation of policy, financial, 
or personnel matters

Simulation of product flow on a 
manufacturing floor

Mechanisms Represented Simulation of atmospheric 
transport and diffusion for 
chemical or biological agent

Simulation of disease 
progression in humans at 
various levels of resolution

Capacity for Human 
Interaction with the 
Simulation While It Runs

Training simulator for 
helicopter pilots with 
interactive visualization

Constructive simulation with 
no interactive capabilities

Note: (The spectrum of simulations shown here illustrates why a prescriptive approach to con-
ceptual model development is beyond current capabilities if the approach is to apply to 
all simulation varieties.  Potential simulation differences indicated would impact signifi-
cantly a conceptual model for the simulation.  These differences affect how the concep-
tual model should be developed, what it should contain, and how it should be 
documented.  For example, the conceptual model for a missile seeker simulation with a 
facility, such as an anechoic chamber, has to address control of facility temperature and 
humidity so that reliable results can be obtained.  Such capabilities are not required for 
constructive simulations that are comprised only of computer software.)
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16.4.2 Functions of Federate and Federation Conceptual Models

For a single simulation (i.e., a federate in HLA terminology) modification or 
new development, the function of the simulation conceptual model is to 
 connect M&S requirements to the detailed specifications for a simulation 
design that can satisfies M&S requirements fully. According to the RPG, this 
is the function of the simulation conceptual model even if the simulation is 
complex and involves people, hardware, software, or systems in the loop. 
Figure 16.1 illustrates these functions for the simulation conceptual model. 
For a legacy simulation, the simulation conceptual model identifies and 
describes capabilities and limitations of the simulation so that appropriate 
assessment can be made of potential simulation applications.

During the early development of the FEDEP, it was thought by some that 
the FOM would be sufficient to assure federate compatibility in a  federation. 
However, early experiments with HLA federations showed that something 
more than the FOM and HLA rules were needed to ensure federation objec-
tives could be satisfied. The FOM addressed communications among fed-
erates, but it did not fully address the logical issues of representational 
compatibility since federates in a federation may have different levels of 
resolution in their representations, different assumptions, etc. So the FCM 
became part of the FEDEP. The FCM describes what the simulated world of 
the federation will look like and how it will function. The FCM is the key for 
determining representational compatibility among federates in a federation 
and for identifying federate characteristics that may be needed (if not pres-
ent) in order for the federation to satisfy its objectives. This identification 
of gaps in capability by the FCM can lead to identification of modifications 
needed by federates or of new federates that will be required for the federa-
tion to be able to satisfy its objectives.

In a combination of simulations used together in a federation, FCM helps 
to organize use of individual federates so that federation objectives can be 
achieved, which leads to the federation design. Often the conceptual analy-
sis involved in federation development is more concerned with determining 
what can be achieved with the collection of federates and communication 
capabilities available for the federation than it is in determining federate 
characteristics needed to satisfy federation objectives. This is because sched-
ule and resource constraints may restrict the federation to use of available 
federates. Federation capability (relative to objectives for the federation) may 
be constrained by capabilities and limitations of federates available to it, 
including the real systems and personnel available for use in the federation.

Both the RPG and the FEDEP FCM made a significant contribution to 
simulation professionalism by making the conceptual model an explicit and 
distinct artifact of simulation development, whether federate or federation. 
Prior to the RPG and FEDEP FCM, few simulations had explicit conceptual 
models as artifacts of simulation development. The information that should 
be found in a conceptual model might be scattered among design papers, 
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users and analysts’ manuals, etc., if the information were documented at all. 
Existence of an explicit conceptual model creates a particular item where 
anyone involved with simulation development or use can find the informa-
tion needed for assessment of simulation appropriateness for a particular 
application, whether used as an individual simulation by itself or in a federa-
tion with other simulations. Determination of compatibility among federates 
in a federation is always an important consideration.

16.4.3 Conceptual Model Content

What information should a simulation-related conceptual model contain? 
That question has engendered much debate and discussion. There have been 
many suggestions about what information should be contained in the con-
ceptual model and how it should be documented. In 1999, a nine-element 
description was suggested for simulation conceptual models (Pace 1999):

 1. Model version or portion identification
 2. Identification of the simulation developer and pertinent points of 

contact (POCs)
 3. Simulation purpose and requirements
 4. Overview of a simulation based upon the conceptual model
 5. General assumptions of the conceptual model
 6. Identification of possible states, tasks, actions, behaviors, relation-

ships, interactions, events, parameters, and factors for entities and 
processes represented in the conceptual model

 7. Identification of algorithms (pedigrees and assumptions)
 8. Simulation development plans
 9. Summary and synopsis

RPG guidance about what information a conceptual model should contain 
has evolved to the example list of information included in a simulation con-
ceptual model shown in Table 16.2.

FCM describes the entities and actions that need to be included in the fed-
eration to achieve all federation objectives. As far as possible, the FCM should 
be an implementation-independent representation that serves as a vehicle 
for transforming federation objectives into functional and behavioral capa-
bilities. Thus, the FCM, just as the simulation (federate) conceptual model, 
provides traceability from federation objectives to federation design imple-
mentation. As with the federate conceptual model, there is not a prescribed 
list of information items for the FCM. The VV&A Overlay for the FEDEP 
adopted in December 2007 as a recommended practice (IEEE 1516.4) focuses 
on ensuring that the FCM achieves objectives specified for the FCM.
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The exact content of a simulation-related conceptual model will vary with 
the kind of simulation and its application. For example, processing speed for 
elements of the simulation becomes a matter of concern when the simulation 
interacts with real systems that function in real-time. This requires the con-
ceptual model to give consideration to computational resources required by 
the algorithms identified in the conceptual model, and at times some of the 
algorithms will need to be replaced with faster-running approximations. On 
the other hand, normally the conceptual model for a constructive simulation 
would not need to address such factors.

Well done and well documented simulation (federate) conceptual models 
facilitate development of a FCM that might use one or more of the federates 
with such conceptual models (Pace 2001). Information in the federate con-
ceptual models enables conceptual analysis of the FEDEP to determine com-
patibility and appropriateness of the various federates relative federation 
objectives. Not so well-done conceptual models for federates in a federation 

TAble 16.2

Example List of Information Included in a Simulation Conceptual Model

1) Simulation descriptive information
model identification (e.g., version and date)•	
POCs•	
model change history•	

2) Simulation context (per intended application)
purpose and intended use statements•	
pointer to M&S requirements documentation•	
overview of intended application•	
pointer to FDMS and/or other sources of application domain information•	
constraints, limitations, assumptions•	
pointer to referent(s) and referent information•	

3) Simulation concept (per intended application)
mission space representation (simulation elements & simulation development description)•	
simulation space functionality•	

4) Simulation elements, including
entity definitions (entity description, states, behaviors, interactions, events, factors, •	
assumptions, constraints, etc.)
process definitions (process description, parameters, algorithms, data needs, •	
assumptions, constraints, etc.)

5) Validation history, including
M&S requirements and objectives addressed in V&V effort(s)•	
pointer to validation report(s)•	
pointer to simulation conceptual model assessment(s)•	

6) Summary
existing conceptual model limitations (for intended application)•	
list of existing conceptual model capabilities•	
conceptual model development plans•	

Source: Based on Department of Defense Modeling and Simulation Coordination Office, VV&A 
Recommended Practices Guide, RPG Build 3.0, September 2006.



Conceptual Modeling Evolution within US Defense Communities 439

make it both much more difficult to develop an appropriate FCM, and more 
difficult to perform V&V on the federation. This is because information 
needed to support assessment of representational capability of federates and 
to support V&V of the federation may be difficult or impossible to discover 
for federates without well-done conceptual models for those federates.

16.4.4 Conceptual Model Documentation Format

The preceding section addressed conceptual model content. Now it is appro-
priate to ask, How should a conceptual model be documented? Conceptual 
model documentation format should accomplish two objectives: (1) ensure 
that the simulation design team fully understands what the simulation must 
do so that an appropriate simulation design can be developed, and (2) facili-
tate communication with all simulation stakeholders so that all fully under-
stand simulation capabilities, limitations, and assumptions. It should be 
remembered that the stakeholders include the simulation development team 
and simulation users, those involved in assessing the simulation (such as 
V&V personnel), SMEs used in simulation development and/or assessment, 
those impacted by results from the simulation, simulation sponsors, and per-
haps others.

A variety of formats have been used to document simulation-related con-
ceptual models (Pace 1999). Originally the most common one encountered 
was the ad hoc method. In this approach, information items of the sort that 
one might like to have in a conceptual model were scattered among design 
papers, user and analyst manuals, code comments, etc. Often conceptual 
models described by the ad hoc method were incomplete, inconsistent, and 
not updated for continued development and evolution of the simulation.

Another approach to documenting simulation-related conceptual models 
is the design accommodation method. In this, the simulation developer uses the 
descriptive format, such as UML, that has been chosen to support simulation 
design to describe and document the conceptual model. There are advan-
tages to such an approach:

It minimizes opportunity for misunderstanding and error as the •	
simulation developer transforms the conceptual model into the sim-
ulation design.
It facilitates keeping the conceptual model current with evolution of •	
the simulation.

However, there are drawbacks to this approach.

Most simulation development formats such as UML do not have •	
convenient mechanisms for capturing assumptions, algorithm pedi-
grees, POCs, simulation development plans, and other such informa-
tion that is part of a well-done simulation-related conceptual model.
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Use of a particular simulation development format can limit capabil-•	
ity of the conceptual model as a communication vehicle among the 
variety of parties with interests in the simulation (sponsors, users, 
assessment personnel, etc., as well as simulation development person-
nel) because some of them may not be adequately familiar with the 
descriptive format (such as UML) used for the simulation design.

A third approach to describing simulation-related conceptual models 
employs knowledge engineering techniques. This method was emphasized 
in the CMMS/FDMS paradigm. It has also been continued by a variety of 
others (e.g., Firat 2001, Kabilan and Mojtahed 2006). This approach has the 
benefit of forcing the conceptual model to have more formality and logical 
consistency than it might otherwise have. This approach also has  substantial 
potential for efficiency and reuse of conceptual elements as they employ 
“standard” compositions and formats. However, it is not always possible to 
describe the complexity of some conceptual model easily in such formats.

Efforts to automate aspects of simulation-related conceptual model devel-
opment normally use the design accommodation approach or a knowledge 
engineering approach, or a combination of the two. Such automation endeav-
ors include development of tools that support conceptual model develop-
ment. Within particular application domains, encouraging progress is being 
made.

A fourth approach considered during development of RPG simulation con-
ceptual model ideas is the scientific paper method. This approach employs the 
normal way of developing a scientific paper (or report). This material tends to 
identify assumptions more completely, be more explicit about algorithms and 
their development, uses standard mathematical and technical  conventions, 
and is more rigorous in its specifications of limitations associated with the 
simulation conceptual model. This method of conceptual model description 
also is the most amenable to robust support for conceptual validation reviews 
and most accommodating to simulation reuse and modification. It was the 
approach to describing simulation-related conceptual models preferred by 
the team developing conceptual model materials for the RPG.

The FEDEP and the VV&A overlay for it both identify a number activities 
related to development, use, and evaluation of the FCM, but IEEE Standards 
1516.3 (FEDEP) and 1516.4 (VV&A Overlay) do not prescribe particular docu-
mentation formats for these activities.

16.5 SIW Conceptual Model Study Group

By late 2001, the simulation (federate) conceptual model described in the 
RPG and the FCM of the FEDEP had basically stabilized. Their approaches 
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for conceptual model development and documentation have changed little 
since 2001.

Unfortunately, although the importance of an explicit and distinct simula-
tion conceptual model was frequently emphasized within the SIW VV&A 
community and elsewhere, development of a simulation conceptual model 
of the sort described by the RPG has not been done in many simulation 
developments. This should not imply that explicit conceptual models have 
not been developed. There are a number of program-specific examples 
within the US Defense community, such as the maritime component of the 
Synthetic Theater Operations Research Model (STORM), where explicit and 
distinct simulation conceptual models of the sort described by the RPG have 
been developed. However, failure to develop an explicit and distinct con-
ceptual model continues to be a problem in many simulation developments. 
Assessments have been published showing that absence of a RPG-like simu-
lation conceptual model can make simulation conceptual validation more 
difficult and can increase resource requirements since it can be more dif-
ficult to reuse simulation components with the information provided by a 
well-done simulation conceptual model (e.g., Metz 2000).

During 2002, Jack (“Jake”) Borah began to emphasize the need to go beyond 
where things were with simulation-related conceptual modeling. He thought 
a conceptual modeling study group within SIW could begin to identify con-
ceptual modeling best practices and possibly develop a conceptual modeling 
overlay for the FEDEP (Borah 2002). In the spring of 2003, SIW established the 
SCM SG with Borah as its leader.

During the next 2 years, in addition to interim reports at the Euro-SIWs 
and Fall SIWs, the Study Group published an article in Simulation Technology 
(Borah 2003), created a SCM bibliography (in 2008, the bibliography reached 
its sixth version, which is available in the Standing Study section of the SISO 
Web site, http://www.sisostds.org), and developed a set of foundational doc-
uments for a simulation conceptual modeling Product Development Group 
(PDG) within SIW. “This set of documents consisted of the SCM Introductory 
Statement, the SCM Topics Listing, the SCM Terminology for Definition, and 
the SCM Taxonomy of Concepts” (Borah 2005).

In July 2007, the SIW SCM SG transitioned into a SSG.* The focus of the SIW 
Simulation Conceptual Modeling (SCM) group has evolved from developing 
a possible conceptual modeling overlay to the FEDEP to a focus on expan-
sion of FEDEP Step 2 (Conceptual Analysis Activity), Activity 2.2 (Develop 
Federation Conceptual Model) (SIW SCM SSG, Spring 2007 meeting).

In 2007, the SIW SCM SSG also began to interact significantly with the 
NATO Conceptual Modeling Study Group (MSG-058) and plans to include 

* A SISO study group typically is established for a limited time and is expected to evolve into 
a product oriented group or into a Standing Study Group (SSG). A SSG within SISO is “estab-
lished to represent a specific community or national group, to mature a potential standard … 
SSGs may have an indefinite life span.” (SISO Web site, http://www.sisostds.org).
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material from the NATO Conceptual Modeling Study Group in development 
of conceptual modeling best practices as a balloted community product (per-
sonal e-mail communication from Borah, 13 January 2009).

In 2008, Simulation Conceptual Model SSG focus evolved to work with the 
DSEEP model development, helping with the conceptual model definition 
and conceptual model development process. The FEDEP is a generalized 
systems engineering process for building and executing HLA federations. 
In 2007 as part of the SISO for periodic review of approved products (such 
as IEEE Std 15.16.3-2003) to ensure their continued relevance, it was decided 
to expand the systems engineering process embodied within the FEDEP to 
“all users of distributed simulations” in a product now called DSEEP. It “is 
intended as a high-level process framework into which lower-level systems 
engineering practices native to any distributed simulation user can be easily 
integrated.”

16.6 Persistent Problems

This section identifies a number of persistent problems impacting simula-
tion-related conceptual modeling theory and practice. Overcoming some 
of these problems will require advances in conceptual modeling theory 
(refinement of conceptual modeling definitions, conceptual model content, 
 documentation formats, processes for conceptual model development and 
use, etc.) and other problems will require changes in the way simulation 
community members behave if progress is to occur.

Conceptual modeling is bigger than simulation-related conceptual mod-
eling. This was noted earlier, with an example of nonsimulation concep-
tual modeling being the Journal of Conceptual Modeling with its database 
orientation. Insights about conceptual modeling from the nonsimulation 
communities have been used by simulation-related conceptual modeling 
where pertinent. Often these insights have come to simulation-related con-
ceptual modeling via knowledge engineering approaches. The comments 
of this section are restricted to simulation-related conceptual modeling for 
simulations mainly used within the US military and Defense community. 
It should be noted that such simulations include those related to NATO and 
other US allies; so this perspective is not as restrictive as it might sound 
at first.

16.6.1  Failure to Develop explicit and Distinct Simulation-
r elated Conceptual Models

The most serious persistent problem in simulation-related conceptual mod-
eling in this author’s perspective is the frequent failure of a simulation 
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development or modification to produce an explicit and distinct simulation 
conceptual model as an artifact. Reasons for the persistence of this problem 
include the following:

Few simulation development or modification contracts specify a •	
conceptual model as a product required by the contract.
Lack of a widely accepted standard paradigm for simulation devel-•	
opment and modification that specifies artifacts normally produced 
in quality simulation developments (with the conceptual model as 
one of the artifacts)—this comment mainly applies to single simula-
tions (federates) since a standard paradigm (the FEDEP) exists and 
is used for HLA combinations of simulations (federations) in accor-
dance with IEEE Std 1516.3-2003.
Lack of professionalism by simulation developers.•	

There are enough simulation development horror stories of avoidable prob-
lems that were encountered because of lack of an explicit conceptual model for 
knowledgeable simulation developers to know the importance of  producing 
an explicit simulation conceptual model. Normally such stories are heard 
privately since simulation developers are reluctant to air such problems pub-
licly, or to document them in publications.

This author considers failure of simulation communities to insist that 
all simulations within their sphere have explicit conceptual models to be a 
lack of professionalism. M&S practitioners have been striving to advance 
M&S as a profession. Their efforts include work on development of an 
M&S body of knowledge (e.g., Oren 2005) and development of various 
standards for professional certification in M&S.* Perhaps as progress 
occurs in M&S professional standards, failure to develop simulations 
without explicit conceptual models will become unacceptable to all M&S 
professionals.

What must happen for this problem of simulations being developed 
without explicit conceptual models to be overcome? It took a DoD edict 
that only distributed simulations using HLA would be funded to make 
the US Defense community use HLA as extensively as it now does. It 
probably will take a similar level of financial incentive for all (or at least 
most) simulation developers to always produce an explicit and distinct 
conceptual model during simulation development. As system designs and 
operational policies become based more heavily on simulation results, 
perhaps the threat of litigation questioning the appropriateness of such 
results will stimulate more emphasis on explicit conceptual models for 
simulations to provide the solid rational basis for conceptual validation 

* For example, the Modeling and Simulation Professional Certification Commission (M&SPCC) 
under the auspices of the National Training and Simulation Association (NTSA) is involved 
in such.



444 Conceptual Modeling for Discrete-Event Simulation

that a simulation conceptual model can provide (especially for those areas 
in which data are limited or lacking) will create the financial incentive for 
always having an explicit conceptual model as an artifact of simulation 
development.

Successful simulation developments and modifications with explicit and 
distinct conceptual models demonstrate viability of including such concep-
tual models in simulation development and modification. It is time for simu-
lation developers to move beyond the simulation development equivalent of 
spaghetti code, which is an appropriate analogy for simulations developed 
without explicit conceptual models.

16.6.2 Diversity of Applications

As noted earlier, the diversity of simulations for which guidance in the DoD 
RPG is intended precluded the possibility of prescriptive guidance about 
 conceptual model; hence, conceptual modeling guidance in the RPG is 
descriptive. A sound military principle is “Divide and conquer.” It applies 
here. Prescriptive conceptual modeling guidance is viable for restricted appli-
cation domains. For that application domain, a precise definition of conceptual 
modeling for simulations in that application domain can be developed. The 
exact information content of such conceptual models and their documentation 
format can be specified. Development and use processes can be defined explic-
itly. Other aspects of conceptual modeling can also be addressed in detail for 
that application domain. Perhaps after conceptual modeling successes that 
can be captured and summarized as best practices for a few dozen applica-
tion domains have been demonstrated, more general prescriptive conceptual 
modeling guidance can be developed based upon common elements of such 
best practices.

16.6.3  excessive expectations for Simulation-r elated 
Conceptual Modeling

The potential of formal approaches from knowledge engineering, from use of 
UML, and from other simulation-design methodologies to improve concep-
tual modeling, especially in automating conceptual model development and 
facilitating reuse of conceptual model components is great, but thus far such 
approaches have been most successful in particular application domains. 
Sometimes discussion of such formal approaches to simulation-related con-
ceptual modeling leaves the impression that these formal approaches to 
simulation-related conceptual modeling will be able to address all  varieties 
of simulation applications, including what presently can only be done with 
less formal approaches to conceptual modeling, and that as a result of exten-
sive use of the formal approaches, many of the simulation problems stem-
ming from inadequate conceptual models will be avoided in the future. This 
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author believes that kind of impression creates excessive expectations that 
are unlikely to be achieved in the near term.

Perspectives presented at the Spring 2008 meeting of the SIW SCM SSG pro-
vide a counterbalance to the kind of excessive expectations mentioned above. 
That “no single, monolithic conceptual model can satisfy the needs of all stake-
holders” was presented as a premise in this meeting. This comment is in the 
context of a conceptual model related to a single simulation. Acceptance of 
such a premise will help to reduce excessive expectations for simulation-related 
conceptual modeling, and make expectations more realistic. It was also noted 
in that meeting that not all future ways simulation-related conceptual models 
may be useful are currently known and understood. A conclusion suggested 
at the meeting was that composable approaches to conceptual model construc-
tion should be pursued to help ensure greatest future utility for simulation-
related conceptual models.

16.6.4 r esource l imitations

Overcoming difficult problems requires substantial resources. Borah noted 
that lack of resources for those directly involved in the SIW conceptual mod-
eling study group was the biggest obstacle preventing the study group from 
making as much progress as desired (personal e-mail communication from 
Borah, 13 January 2009).

There are a number of substantial development efforts currently related 
to simulation-related conceptual models and tools for them, a few of which 
are identified here. A number of program-specific simulations within the US 
Defense community provided adequate resources and direction for explicit 
conceptual models of the sort described in the RPG to be part of simulation 
development. Activities by the Swedish Defence Research Agency (FOI) were 
mentioned earlier. A substantial effort addressing conceptual model V&V as 
well as tool support for conceptual modeling is going on in Turkey under the 
leadership of Semih Bilgen (e.g., Tanriover and Bilgen 2007). Development 
of conceptual modeling material for the evolving DSEEP supplement to the 
HLA FEDEP and the NATO Conceptual Modeling Study Group (MSG-058) 
were mentioned earlier. Some of these efforts (and others) are addressed 
elsewhere within this book.

In 2006, Stewart Robinson provided a broader perspective on conceptual 
modeling than is usually presented by identifying a number of research 
areas that need to be addressed for substantial progress in simulation-re-
lated conceptual modeling (Robinson 2006a, 2006b). The research areas iden-
tified included conceptual modeling definition and requirements, methods 
for conceptual model development and representation, conceptual model 
assessment, and effective means of teaching conceptual modeling. Whether 
or not adequate resources come forth to support such research fully remains 
to be seen.
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16.7 Final Comments and Conclusions

This chapter has provided historical context for several major conceptual 
modeling developments within the US military and Defense simulation 
communities. This context should provide increased understanding about 
continuing issues in simulation-related conceptual modeling.

For new simulation developments and for simulation modifications, ample 
guidance is provided in the DoD RPG about the simulation conceptual 
model for an explicit and distinct conceptual model to be produced as an 
artifact of simulation development or modification even though that guid-
ance is descriptive instead of prescriptive. For HLA federations, the FEDEP 
of IEEE Std 1516.3 provides guidance about the FCM and the VV&A overlay 
to the FEDEP of IEEE Std 1516.4 provides guidance that will help ensure 
the FCM accomplishes its functions acceptably. In the future, DSEEP materi-
als are expected to provide comparable guidance for all users of distributed 
simulations.

Simulation developers, whether of a single simulation (federate) or a 
combination of simulations working in concert as a distributed simulation 
(federation), should follow the available guidance about simulation-related 
conceptual models so they can avoid the kinds of problems that arise from 
not having the kind of conceptual model needed.

Much room for improvement in simulation-related conceptual modeling 
exists. Various efforts are underway to advance conceptual modeling capa-
bilities within US Defense simulation communities and elsewhere. These 
efforts are expected to improve efficiency in conceptual model development, 
both by increased automation and by employment of proven methods in 
conceptual model development. These efforts also may increase potential 
reuse of conceptual model components, especially with an organization or 
particular simulation development.

Appendix: Glossary

AIAA American Institute of Aeronautics and Astronautics
ASME American Society for Mechanical Engineers
CMMS Conceptual Model of the Mission Space
DCFM Defence Conceptual Modeling Framework
DEVS Discrete Event System Specification
DIS Distributed Interaction Simulation
DMSO Defense Modeling and Simulation Office
DoD United States Department of Defense
DSB Defense Science Board
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DSEEP Distributed Simulation Engineering and Execution Process
EATI Entities, Actions, Tasks, and Interactions
FCM Federation Conceptual Model
FDMS Functional Description of the Mission Space
FEDEP Federation Development and Execution Process
FOI Swedish Defense Research Agency
FOM Federation Object Model
GAO Government Accounting Office
HLA  High Level Architecture
IEEE Institute of Electrical and Electronics Engineers
KIRC Knowledge Integration Resource Center
M&S Modeling (or sometimes “Model” or “Models”) and Simulation(s)
M&S CO Modeling and Simulation Coordination Office
M&SPCC Modeling and Simulation Processional Certification Commission
NTSA National Training and Simulation Association
POC Point of Contact
RPG Recommended Practices Guide
SCS Society for Computer Simulation International
SISO Simulation Interoperability Standards Organization
SIW Simulation Interoperability Workshop
SME Subject Matter Expert
STORM Synthetic Theater Operations Research Model
T&E Test and Evaluation
UML Unified Modeling Language
US United States
V&V Verification and Validation
VV&A Verification, Validation, and Accreditation
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17.1 Introduction

In the globalized world with competition and the focus on productivity, the 
main goal in semiconductor wafer manufacturing is to maximize the output 
of the fabrication facilities (in short, wafer fabs) under due date constraints. 
In such an optimized environment, it is essential to have good prediction of 
fab behavior after a breakdown of critical machines and how to meet the due 
dates in such a situation. To that end, simulation is a very important tool. 
Simulation can also be used to test various parameters of machines to find 
better settings (e.g., as in Rose 2003).

Modeling manufacturing environments in all of its details result in com-
plex models, which have the big disadvantage that simulation studies can 
become very time consuming. Therefore, we developed several approaches 
to build simple models that lead to shorter simulation runtimes.

It is abundantly clear that a high degree of simplification of a complex fab 
model leads to relatively high deviations of the interesting fab characteristics 
but also to a very short simulation time (e.g., Hung and Leachman 1999). In 
contrast to this, a low degree of simplification leads to low deviations in the 
characteristics but a higher simulation time.

When designing a simulation conceptual model, the model should repro-
duce the behavior of the real world related to the model objectives (Robinson 
2008). Objectives are, for example, to maximize the throughput or to mini-
mize the inventory level in a fab. Consequently, the simulation model must 
mimic the behavior of the real world concerning these characteristics to a 
sufficient degree. In addition, the model should be as simple as possible to 
reduce the development and simulation time. This chapter focuses on models 
with a very high degree of simplification and we show different methods to 
reach a sufficient degree of accuracy concerning different model objectives.

In the next section, we give an overview about the already existing approaches, 
both with a high and a low degree of simplification. In the third section, we 
describe the complex wafer fab model, which is used to  estimate the parameters 
of the simple models, and the procedure to calibrate the simple models. Then 
we present two variants of a simple model. The first one focuses on a good pre-
diction of the average lot cycle times whereas the  second focuses on predicting 
lot cycle time distributions. We also provide some results and discuss the limi-
tations of the approaches. In the last section, we give a conclusion.

17.2 Related Work

Robinson (2008) provides an overview on model simplification ideas for con-
ceptual models. In most cases, simple models are not built from scratch but are 
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simplifications of existing models. To that end the modeler removes scope and 
detail from a given model or represents its components in a simplified manner. 
Most authors work with the one or more of the following approaches: removing 
unimportant components of the model, using random variables to replace parts 
of the model, considering less detail for the range of variables in the model, and 
combining components of the model into new and simpler components.

The main idea of our approach to reduce the complexity of the model for a 
semiconductor wafer fab is to replace machines in the fab with delay elements, 
i.e., with random variables representing large parts of the production plan of 
a lot (e.g., Hung and Leachman 1999). This means to model a few machines in 
detail and to replace the processing steps a lot would take at deleted machines 
by dummy machines. These dummy machines mimic the delay the lots would 
need at the replaced steps. The main issue is to delete as many machines as 
possible with the objective to reduce the complexity of the fab and to mini-
mize the number of operations during simulation while the simple model 
behaves as much as possible as the complex one. Highly utilized machines 
have a big influence on the fab and the behavior of the lots, and should not be 
considered for deletion. In Jain and Lim (1999b), different levels of detail have 
been tested. One idea is to model only the bottleneck machine group in detail. 
Alternatively more highly utilized machines can be modeled if the accuracy 
concerning the behavior of the simple and the complex model are inadequate. 
Our approaches focus on the high degree of simplification bottleneck only 
modeling approach to maximize the savings in simulation time.

There are different ways to set the processing times of the dummy machines. 
Rose (1998) uses exponential distributions, whereas Hung and Leachman (1999) 
try static values and quartile-uniform distributions. The quartile-uniform vari-
ant assumes the distribution is uniform between quartile points. Calculating 
delay values using this method is faster than the distribution method of Rose. 
Our approaches in this chapter use Rose’s variant because the exponential dis-
tributions match the distributions in the complex model at best.

The next problem is the dynamic adaptation to different utilizations of the 
fab. Peikert, Thoma, and Brown (1998) try to adapt the dummy delays by cal-
culating the raw processing time of the dummy steps and multiplying it with 
the flow factor (cycle time divided by the raw processing time) of the lots at 
a specific utilization. This method may be acceptable, but in scenarios where 
the different parts of the fab have differently utilized machines, this approach 
may influence the results to a high degree. Further dynamic adaptation 
approaches are not available in the literature so far. In this chapter, we extend 
Rose’s approach with dynamic distributions to adapt to different release rates 
of lots into the fab, or in a more general sense to different fab workloads.

The intention of the application of simple models is to match some or ide-
ally all important fab performance characteristics of the complex model. In 
the related work, different types of simple models are tested with regard to 
some of these characteristics. Jain, Lim, and Low (1999a) split a fab into a few 
independent parts and use the bottleneck only approach for each part. They 
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focus on the average cycle time and compare a detailed fab model with their 
reduced model. The simple models fail to approximate the average cycle time. 
Peikert, Thoma, and Brown (1998) also use a bottleneck-only approach. Their 
interest is to assist the design of a wafer fab with the aim to understand fab’s 
behavior and to optimize operator deployment and the usage of dispatch 
rules. Hung and Leachman (1999) use different levels of model reduction 
and predict the cycle time of lots with an acceptable accuracy.

However, none of these approaches provides a sufficient adaptation to a 
change in lot release rates. In this chapter, we extend the previous approaches 
of one of the authors to overcome this weakness. This approach is as simple 
as possible and provides a high simulation speed-up. The related work can 
be found in Rose (1998, 1999, 2000a, 2000b, and 2002) and will be described in 
the following sections.

17.2.1 basis of the New Approach

Rose’s simple model approach is shown in Figure 17.1. As mentioned, we chose 
the bottleneck only approach and modeled the bottleneck machine group in 
all its details in our simple model. The bottleneck machine is usually not the 
first machine that a lot enters when entering a fab. The machines between the 
production start of a lot and the first arrival at the bottleneck queue are mod-
eled with a delay distribution. Another delay distribution is used to model the 
machines at the end of the production process that lots will pass after their 
last departure from the bottleneck tool group. Another important property of 
wafer fabs is the repeated processing of the lots at the bottleneck tool group. 
A wafer contains up to 50 layers, which require similar processing steps. 
This repeated processing of lots at the bottleneck tool group makes it neces-
sary to extend the model with a loop back to the bottleneck. In the previous 
approaches of Rose a static delay distribution is used to model the delay of the 
lots between single bottleneck processing steps. Static distributions mean that 
all lots of a product will be delayed according to the same distribution. We 
have three dummy machines in the simple model, in total. For each of these 
dummy machines one distribution for each product in the fab was assigned.

Delay loop

More
rounds?Bottleneck

QueueDelay input
Delay output

Fig ur e 17.1
Simple model with delay distribution in the loop.
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17.2.2 Predicting Fab behavior Over Time

Figure 17.2 shows the inventory (WIP = Work In Progress) over time after a 
breakdown of all bottleneck machines. Dozens to hundreds of replications 
are necessary to generate these curves so that our simple model approach 
has to be used. Typical research questions for bottleneck breakdowns are to 
find appropriate dispatch rules to meet due dates or to avoid the dramatic 
increase of the inventory/WIP level after a bottleneck breakdown. It is pos-
sible to test this within an acceptable time horizon only with a simple model. 
In the figure, first-in first-out (FIFO), shortest processing time fist (SPTF), crit-
ical ratio (CR), and slack time are compared. A detailed description of this 
problem and the different dispatch rules can be found in Rose (1998).

17.2.3 Predicting Cycle Times

Predicting cycle times works well with the simple model if the workload and 
product mix that is released into the simple fab model is the same as it was in 
the complex model during calibrating the simple model. This leads to one of 
the weaknesses of the old approach. In Figure 17.3, the characteristic curves 
of the complex model and the simple model are compared. The simple model 
was adjusted with one simulation run of the complex model at a release rate 
of 70%. Consequently, the mean cycle time of the lots matches the value of the 
complex model only for this workload. At high workloads (beyond 90%) 
the mean cycle time increases. The reason for this evolution of the curve is 
the nonexisting workload limitation of the simple model. Only the bottleneck 
workcenter has a limiting effect, which appears only at higher workloads. A 
detailed description of this problem can be found in Rose (2000a).

460

465

470

475

480

485

490

495

500

2000 2500 3000 3500 4000

W
IP

Time

FIFO
SPTF

Critical ratio
Slack time

Fig ur e 17.2
WIP evolution.



456 Conceptual Modeling for Discrete-Event Simulation

17.3 New Approaches: An Introduction

Our new approaches are based on the approach discussed in the last  section. 
So far static distributions have been used in the loop to model the complex 
fab behavior. In our new approaches, we make the distributions in the loop 
dependent on the number of lots in this loop, which is an indirect indica-
tor of the fab workload. This means that at the time a value is measured 
(e.g., a delay value of a lot in the loop) in the complex model simulation run 
(which is used to adjust the simple model), the number of lots in the marked 
 section with the label “lots in loop” of the fab (Figure 17.4) is used to assign 
this value to one of an array of distributions. At the time a lot needs to be 
delayed in the loop of the simple model the number of lots in the loop will 
be counted and the respective distribution will be used to sample a delay 
value for this lot.

The difference between our two approaches is the following: The first 
approach uses a delay distribution modeling the delay of a lot in the loop, 
whereas the second approach intends to generate the interarrival time distri-
butions of lot arrivals at the bottleneck queue.

17.3.1 Complex Model

We chose the Measurement and Improvement of MAnufacturing Capacities 
(MIMAC) model 6 from the SEMATECH test bed (Fowler and Robinson 
1995) as our complex wafer fab model test case. It consists of 228 worksta-
tions. Nine products are built in this fab. Every product has about 300 pro-
cessing steps. Therefore, this fab is complex enough to be comparable to a 
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real wafer fab. There are some limitations concerning the operators of the 
 bottleneck machine group. If this group is not only responsible for the bot-
tleneck machines, the operators have to be deleted due to the nonavailabil-
ity of other machines, other than these bottleneck machines in the simple 
model. This procedure is necessary in our case. One solution to avoid this 
problem could be to restrict a particular group of operators in the com-
plex model to the bottleneck machine group. If this is the case, they can 
be modeled with all characteristics in the simple model, too. Alternatively, 
it may be possible to compute availability times of operators at the bottle-
neck (depending on the utilization of the fab) and use these values to adjust 
operator  characteristics in the simple model. However, we did not consider 
these alternatives. The second limitation is that products that are not pass-
ing through the bottleneck must be deleted. In our fab this applies to three 
products so that six products remain in our fab model. Deleting products 
in a fab, results in different characteristics of the fab, e.g., in different cycle 
times of all lots due to the lower utilization. Therefore, we have deleted 
these three products in our complex fab to solve this problem. A possible 
alternative could be that additional workcenters have to be included into the 
simple model.

17.3.2 r equired Characteristics for Calibrating the Simple Model

The following characteristics are necessary for calibrating the simple model:

Delay distribution of every product at the first part of the production •	
process (may depend on the number of lots in the loop).
Delay distribution of every product at the last part of the production •	
process (may depend on the number of lots in the loop).

Delay input Queue

Bottleneck

Delay loop

More rounds?

Lots in loop

Delay output

Fig ur e 17.4
Simple model with number of lots in the loop.
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Distributions in the loop:•	
Delay approach: Delay distribution of every product in the loop •	
depending on the lots in loop value.
Interarrival time approach: Interarrival distribution of lots from •	
the loop at the queue of the bottleneck machine group depend-
ing on the lots in loop value.

Number of rounds in the loop for every product (we use the aver-•	
age number of rounds of a product in the loop and use this value to 
route a lot into the loop or to release it through the last distribution 
of our simple model. If the number of loops varies due to rework for 
example, a distribution for the number of loops may be required).
Parameters of the bottleneck machine group:•	

Number of machines.•	
Meantime between failure (MTBF) distribution, meantime to •	
repair (MTTR) distribution.
Processing times.•	
Set-up times, set-up rules.•	

17.3.3 Computing Distributions

A long simulation run of the complex model with a wide range of workloads 
is necessary to compute enough values for the array of dynamic (discrete 
empirical) distributions. We tested different run lengths to initialize the 
model and found that a 23-year-long run of the complex model is sufficient 
to compute the distributions with an acceptable accuracy. Later, we show a 
method to shorten this long pilot run. We started the complex model run 
with a workload of 10% and increased the workload every simulated year by 
5%. The run finishes 3 years at 99% workload. Based on this very long run, 
we obtain delay data on a wide range (between 5 and 160) of lots in loop. 
The lots-in-loop evolution over time is depicted in Figure 17.5. This method 
is used for both, the delay and the interarrival time approach described in 
this chapter.

17.4  Predicting the Characteristic Curve Using the 
Delay Approach

In this approach, we use delay distributions for each product in the loop and 
choose a lots in loop interval width of five units. According to Figure 17.5, 
approximately a maximum of 160 lots can be in the loop at the same time. 
As a consequence, we have 32 distributions for six products and therefore 
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192 loop delay distributions being dynamically chosen depending on the 
lots in loop value (indirectly modeling the workload of the fab).

For all of the experiments, we made 25 replications of 10-year runs with a 
warm-up period of 1 year.

17.4.1  Characteristic Curve

The characteristic curve is shown in Figure 17.6. Concerning the mean cycle 
time, the new approach matches the complex fab model to a high degree. 
Only at high workloads the deviation slightly increases.
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17.4.2 Cycle Time Distributions

Concerning the cycle time distribution the variance of the simple model is 
too high (Figure 17.7). This is due to the overtaking of lots as described in 
Rose (2000a). In the complex model, only a small percentage of the lots in the 
loop overtake one another. Only if reworking or batch processing occurs or 
dispatch rules other than FIFO are used, does the overtaking of lots of the 
same product take place. Overtaking between lots of different products may 
occur and depends on the different processing step sequences. In contrast to 
this, in the loop of the simple model every lot will be delayed independently 
from the previous one. Therefore, lot overtaking happens rather often. In 
every round of the lots in the loop of the simple model, the variance of the 
cycle time distribution increases. Caused by the independent delays of the 
lots, some lots will have statistically low delay times in every loop and  others 
statistically high ones. In contrast to that, if overtaking happens only in a 
very limited way (as in the complex model), all lots show a similar cycle time 
and the variance is lower.

17.5  Predicting the Cycle Time Distribution with the 
Interarrival Time Approach

To achieve a better cycle time distribution estimate, we want to avoid over-
taking of lots in the loop. Hence, we use a dummy machine with a FIFO 
queue to meet this requirement. A lot arriving at the loop, will be stored in 
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the dummy queue and the machine after this queue releases the lots depend-
ing on the interarrival time characteristics at the bottleneck queue. Instead 
of delay distributions, we now have to determine the appropriate array of 
interarrival time distributions of lots from the loop at the queue of the bottle-
neck machine group. This approach still uses dynamic distributions. This 
is  necessary because the cycle time estimates of an interarrival time model 
without dynamic adaptation to the workload will not match the expected 
ones. The model will run full or low on lots. This is caused by the indirect 
modeling of the delay in the loop using interarrival times. The interarrival 
times change significantly with a different workload of the fab whereas the 
delay in the loop changes only slightly. We have chosen an interval width 
of one lot in loop for our experiments because this approach is much more 
sensitive to deviations in the distributions than the delay approach.

17.5.1 Modeling interarrival Times

We tested three possibilities to model interarrival times in the simple model. 
All of them have advantages and disadvantages and will be described in the 
following.

17.5.1.1 Interarrival between All Lots

The first version (version 1) uses one distribution for all products. The model 
parameters are determined by measuring each interarrival time indepen-
dently of the kind of product of the lots (Figure 17.8). There is only a single 
distribution for all lots-in-loop numbers. This works well but as soon as the 
product mix changes the cycle time results become bad. For the MIMAC 
model about 160 distributions have to be generated (one for each lots in loop 
value, cf. section 17.4). The following versions require a higher number of 
distributions.
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17.5.1.2 Interarrival between Lots with All Combinations of Products

The second version (version 2) uses the interarrival times between all com-
binations of products (Figure 17.9). In this case, the number of distributions 
is equal to the square of the number of products because we consider each 
combination of proceeding lots. In addition, we need distributions for each 
lots in loop value. This means values for 5760 (6 products squared, yielding 
160 distributions each) distributions are required. Therefore, we had to find 
a method to shorten the time for the simulation run of the complex model, 
which is discussed later in this chapter.

17.5.1.3 Interarrival between Lots of the Same Product

In the first two versions no overtaking of lots in the loop is possible. But over-
taking happens, even if it is relatively limited. If the delay in a loop of one 
product is much shorter than the one of another product, overtaking will hap-
pen more often. Therefore we developed a third model version (version 3).

In the complex model, we measure the interarrival time of lots of the same 
product (Figure 17.10). Consequently, we have one distribution for every 
product. That means 960 (6 times 160) distributions in the case of the MIMAC 
model. In the simple model there is one dummy machine per product. This 
machine releases the lots of its product according to the distribution of this 
product. In the first two versions, the dummy machine releases the lots with 
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an interarrival time sampled from the distribution that is chosen according 
to the corresponding total number of lots in loop. For this third version every 
dummy machine has to use the number of lots of the respective product 
in the loop to compute and select the corresponding distribution from the 
array. This is due to the independent release of lots of different products in 
the loop of this version.

It is necessary that the number of lots of a specific product in the loop 
of the simple model matches approximately the corresponding number in 
the complex one to achieve a good mimic of the complex model. In the first 
two versions, this can be done by the calibration with the total lots in loop 
value because all products are in the same queue. But if the total lots in 
loop value is used in the third version the total lots in loop value matches 
 approximately the value of the complex model but the products lots in loop 
value differs significantly from the respective complex model value after 
some time and the behavior of the simple model does not match the behav-
ior of the complex model.

The model version that should be used depends on the complex fab model. 
If overtaking of lots of different products occurs to a considerable degree, 
the third version might be better. If no product mix changes are planned, the 
first version should be used. If the product mix changes, the third version 
seems to be relatively bad. The second version is very good but needs a long 
simulation run to compute the distributions. The first version is in almost all 
cases just as suitable and has the advantage that a lower number of distribu-
tions is necessary.
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17.5.2 Cycle Time Distribution

Figure 17.11 shows the absolute cycle time distributions for two of the three 
versions (version 2 turns out like version 1). Figure 17.12 depicts the cycle 
times divided by the raw process times (the flow factor of the products). In 
Table 17.1, we compare the deviations of some cycle time moments for all 
products. Version 1 leads to a shift in the expected values whereas version 3 
leads to a broader variance than in the complex model.
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17.5.3 Characteristic Curve

The characteristic curve chart is shown in Figure 17.13. Version 1 is similar to 
the one of the previous approach. Version 3 is slightly higher but lies within 
an acceptable range. Version 2 matches version 1 and is not shown.

17.5.4 Minimizing Adjustment Time

To be able to compute the high number of distributions for some of the sim-
ple models we developed a method to shorten the simulation time.

17.5.4.1 Nonlinear Regression

The values have shifted exponentially distributions with a density function of

 f(x) = −ae−bx + 1, a, b, x ∈ ℜ+

with the parameters a and b.

TAble 17.1

Deviation of the Expectation Value, the Variance and the Relative 
Divergence of the Expectation Values

Product Moment Version 1 Version 3

All Products Expectation −0.58 0.78
Variance −0.60 3.73
Relative deviation –2.8% 3.8%

Product 1 Expectation 2.04 1.61
Variance −0.11 6.56
Relative deviation 11.9% 9.4%

Product 2 Expectation −1.07 0.23
Variance −0.08 0.88
Relative deviation −5.7% 1.2%

Product 3 Expectation −0.76 2.21
Variance −0.09 6.45
Relative deviation −4.0% 11.7%

Product 4 Expectation −0.87 0.02
Variance −0.15 1.06
Relative deviation −4.2% 0.1%

Product 5 Expectation 1.24 1.14
Variance 0.16 1.75
Relative deviation 5.3% 4.9%

Product 6 Expectation −1.92 1.51
Variance 0.04 1.80
Relative deviation −7.3% 5.7%
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17.5.4.2 Regression over Regression

Regression can be applied for the parameters a and b, too. Parameter a is 
described by a first-degree polynomial, whereas b is described by a shifted 
exponential function:

 a(y) = cy − d and b(y) = −he−iy + j, c, d, h, i, j ∈ ℜ+, y ∈ ℵ,

where y is the number of lots in the loop.

17.5.4.3 Application of the Methods

At first, the above-mentioned two methods must be used. If not enough 
values are generated (e.g., the simulation run was too short), the missing 
distributions can be approximated with the function described above. The 
regression over regression method could be applied for intervals where 
enough values exist to generate a distribution. The approach requires a good 
accuracy concerning the distributions. This method prevents bad distribu-
tion parameters and enables us to shorten the adjustment time.

With the first version, we were able to shorten the simulation time from 
23 to three and a half years without measurable influence on the results of 
the simple model.

17.5.5 Modeling Overtaking

As already mentioned above, no overtaking occurs in the simple model by 
applying the first two versions. The deviation in contrast to the  overtaking 
in the complex model shifts the mean value of the products’ cycle time 
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distributions. We achieved a better matching of the curves to the complex 
model results by modeling overtaking in the first version.

At first, we measure the amount of overtaking in the complex model as 
the number of lots a product overtakes in the loop on an average. The result 
is a list that contains an overtaking value that specifies the number of over-
takings for every product. Based on this list, we change the order of the lots 
in the queue of the loop in the simple model. Every new lot arriving at the 
queue will overtake exactly the number of lots as described in the list. This 
allows a better match of the curves. The results are depicted in Figure 17.14. 
In Table 17.2 the deviations of some distributions’ moments for all products 
are compared.

17.5.6 Disadvantages

The main problem of the interarrival time approach is that the delay of the 
lots in the loop are indirectly modeled with interarrival times. The aver-
age delay of a lot in the loop can be estimated by multiplying the number 
of lots in the loop with the average interarrival time. There are scenarios 
where the loop runs low on lots (e.g., if a big bottleneck breakdown occurs). 
Consequently, the delay in the loop is low. In this case the lots accumu-
late at the queue of the bottleneck. In general, this is not a problem but in 
the case of a non-FIFO order of lots at the bottleneck queue some lots may 
speed-up and leave the fab soon. This leads to a number of finished prod-
ucts that is considerably higher than in the complex model. One example 
is shown in Figure 17.15 for the CR dispatch rule for different target flow 
factors (the mean cycle time is 1.66). This is a scenario where the interar-
rival time approach did not work. For such investigations the delay-based 
approach should be used.
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TAble 17.2

Deviation of the Expectation Value, the Variance and the Relative 
Divergence of the Expectation Values: Overtaking Included in Modeling

Product Moment w/o Overtaking w/Overtaking

All Products Expectation −0.58 0.20
Variance −0.60 −1.34
Relative deviation −2.8% −1.0%

Product 1 Expectation 2.04 0.42
Variance −0.11 −0.14
Relative deviation 11.9% 2.4%

Product 2 Expectation −1.07 −0.26
Variance −0.08 0.12
Relative deviation −5.7% −1.4%

Product 3 Expectation −0.76 0.26
Variance −0.09 −0.18
Relative deviation −4.0% −1.4%

Product 4 Expectation −0.87 0.01
Variance −0.15 −0.02
Relative deviation −4.2% 0.0%

Product 5 Expectation 1.24 0.77
Variance 0.16 −0.02
Relative deviation 5.3% 3.3%

Product 6 Expectation −1.92 −1.62
Variance 0.04 0.32
Relative deviation −7.3% −6.2%
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17.6 Conclusions

In this chapter, we presented a simple model for semiconductor wafer fabs 
or similar fab types where a reentrant lot flow occurs. These approaches can 
help to reduce the complexity of conceptual models. We introduced two new 
approaches solving several problems of previous simple model approaches. 
In particular, concerning the characteristic curve (depicting the flow factor 
over utilization of the fab and the products’ cycle time distributions, the new 
approaches were considerably better. In addition, we developed a method 
to shorten the model calibration time, which facilitates the application of a 
large number of distributions that might be necessary for some versions of 
the simple models.

The two approaches can also be used to model parts of a fab. Perhaps if the 
behavior of the complete fab is too complex to be modeled with only one sim-
ple model, the discussed techniques can be combined to model the complete 
fab. For example if the delay of the first loops defer to a high degree from 
later loops, the fab can be modeled with two or more simple models that are 
connected in series. Alternatively, each loop could be modeled separately. 
The discussed overtaking techniques can also be modified to achieve a bet-
ter mimic of the complex fab. For example the overtaking behavior between 
different loops can be investigated. However, this makes the simple model 
more complex and the adjustment and simulation time will increase.

Despite the successful improvements in modeling several fab characteris-
tics, there are still issues left; especially the behavior of the interarrival time 
approach. For example the delay approach leads to very good performance 
predictions in the case of a changed product mix, whereas the interarrival 
approach might fail. It is also important which of the interarrival versions is 
used. The first version turns out to be very good in most of the scenarios. The 
second one might be better but the long adjustment time is a big disadvantage. 
The interarrival approach needs distributions with a high degree of accuracy 
whereas this is not very important for the delay approach. Furthermore, the 
application of a non-FIFO dispatch rule is currently not possible with the 
interarrival approach. In contrast to this the delay approach can be used with 
other dispatch rules.
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18
Conceptual Modeling: Past, Present, 
and Future

Durk-Jouke van der Zee, Roger J. Brooks, 
Stewart Robinson, and Kathy Kotiadis

18.1 Introduction

Conceptual modeling is probably the most difficult part of the process 
of developing and using simulation models (Law 1991). Despite this fact, 
 conceptual modeling is largely ignored at conferences and in the litera-
ture. This book addresses this issue by considering the body of research 
for the field as it is beginning to develop. In this way it aims to create 
a point of reference, highlight current research and identify avenues for 
future research.

The objective of this chapter is to provide an overall summary and assess-
ment of the current state of research in conceptual modeling as set out in the 
previous chapters, and to highlight the opportunities for future research. 
As a starting point for this chapter we will use the research agenda set out 
as a list of research themes (shown in Table 18.1) in the editorial of a recent 
special issue on conceptual modeling (Robinson 2007). It builds on earlier 
 literature reviews by Robinson (2006, 2008), and the outcomes of a themed 
day on conceptual modeling following SW06 (The Operational Research 
Society Simulation Workshop 2006).
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Taking each of Parts I–V of the book in turn (Sections 18.2–18.6), the chapters 
in the book are reviewed and cross-referenced to the research themes in Table 
18.1. The themes are numbered 1–5 for the problem domain and 1–12 for the 
model domain and are referenced by a letter representing the domain (P or 
M) and their number in the table. For example, M6 refers to the model domain 
theme “Exploring methods of model simplification.” Finally, in Section 18.7, 
Table 18.1 is reconsidered in the light of the research reported in this book.

TAble 18.1

Research Themes for Conceptual Modeling

The Problem/Modeling Objectives 
Domain (P) The Model Domain (M)

1. Use of “soft OR” as a basis for 
determining a simulation 
conceptual model [ch. 4, 9, 10].

2. How best to work with subject 
matter experts in forming a 
conceptual model [ch. 4, 5, 7–10].

3. How to organize and structure the 
knowledge gained during 
conceptual modeling [ch. 11–15].

4. Alternative sources of contextual 
data/information for conceptual 
modeling, including paper, 
interview and electronic sources.

5. Developing curricula to include 
conceptual modeling in university 
and industry courses on simulation 
[ch. 3, 16].

1. Identifying dimensions for determining 
the performance of a conceptual model 
[ch.1, 2, 4, 5, 7].

2. Comparing different models in the 
same problem domain [ch. 2].

3. Studying expert modelers to understand 
how they form conceptual models [ch. 3].

4. How software engineering techniques 
might aid simulation conceptual 
modeling [ch. 8, 11–16].

5. Adopting/developing appropriate 
model representation methods [ch. 5, 6, 
11–16].

6. Exploring methods of model 
simplification [ch. 1, 2, 17].

7. Identifying, adapting and developing 
conceptual modeling frameworks [ch. 
4–8, 16].

8. Refining models through agreement 
between the modeler and 
stakeholders—“convergent design” [ch. 
4, 5, 16].

9. Exploring the creative aspects of 
modeling [ch. 10].

10. Understanding the organizational 
diffusion and acceptance of models [Ch. 
4, 5, 8–10, 12, 13].

11. Investigating the impact of other 
modeling tasks on the conceptual model 
(iteration in the simulation life cycle).

12. Understanding the effect of throw-away 
models versus models with longevity—
for example, the time spent on 
conceptual modeling, documentation 
and organizational diffusion.

Source: Robinson, S., Journal of simulation, 1(3), 2007.
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18.2 Foundations of Conceptual Modeling

The foundations of conceptual modeling include the definition and aims of 
conceptual modeling. Research on conceptual modeling is still at the early 
stages with no agreed definition of exactly which parts of the modeling pro-
cess are included. Robinson, in Chapter 1, reviews a range of definitions and, 
indeed, the definitions vary in the different chapters of this book (see also 
the preface for comments on this). However, as Chapter 1 explains, it is gen-
erally agreed that conceptual modeling is concerned with the earliest steps 
of the modeling process from identifying the problem at the start of the proj-
ect up to (but not including) building the model. Steps here refer to a logical 
sequence (e.g., the need to understand the system in order to decide what to 
include in the model, in order to then build the model) rather than timing. 
The issues addressed may be reconsidered later in the project and tasks in 
the project may take place in parallel or with lots of iteration (for example, 
decisions on the content for one part of the model may be taken while other 
parts are being built). The initial part of a project involves a number of tasks 
and the differences in definitions concern exactly which of these should be 
included under the heading “conceptual modeling.” The core of conceptual 
modeling would seem to be the decisions taken as to which aspects of the 
system being studied to include and exclude from the model (or as Chapter 1 
puts it, “what is going to be modeled and how”). The conceptual model is the 
combination of these decisions (whether represented explicitly or not) and 
facets of the conceptual model identified in Chapter 1 are that it is a “simpli-
fied representation of the real system” and “independent of the model code 
or software.” The development and general acceptance of a clear definition 
of conceptual modeling in simulation would be very helpful in facilitating 
dialogue and avoiding misunderstanding, as well as helping to establish the 
profile of this important research area.

However, of more practical importance than the definition is to improve 
the way that the modeling tasks involved in conceptual modeling (or the 
initial steps in a modeling project) are carried out. A starting point for this 
is considering the aims of conceptual modeling. In Chapter 2, Brooks relates 
conceptual modeling to the other tasks in the modeling project and states 
that the aim in conceptual modeling should be to “select the conceptual 
model that will lead to the best overall project outcome.” Consequently, it is 
important to consider the interrelationships between conceptual modeling 
and the other modeling tasks. At the conceptual modeling stage the assess-
ment of alternative conceptual models (i.e., the decisions being considered 
for what is going to be modeled) should therefore involve predicting the 
impact on the rest of the project. In particular, this includes how the result-
ing model, once it is built, will perform and Chapter 2 sets out 11 aspects of 
model performance (M1). A small-scale experiment is then described  (Section 
2.8) to investigate the relationship between model characteristics and model 
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performance, in which master’s students built different models and aspects 
of performance were measured (M2). The indications were that size in terms 
of the number of model elements and connections affects understanding, 
whereas complex logic affects build time. Ideal characteristics for models 
are sometimes proposed as part of guidelines for the choice of model and, 
for example, Chapter 1 sets out four requirements for conceptual models 
 (validity, credibility, utility, and feasibility) (M1). A better understanding of 
relationships between characteristics and performance should help in the 
choice of conceptual model and therefore more experiments in the future 
could provide valuable information.

Also discussed in Chapters 1 and 2 is model simplification, since concep-
tual modeling can be viewed as deciding which assumptions and simplifica-
tions to make regarding the system being studied. Alternative conceptual 
models can be developed by simplifying existing ones. Although there are a 
number of papers on simplification methods, more research in this area, par-
ticularly on the circumstances in which the different methods are effective, 
could be informative for conceptual modeling (M6).

Another foundation of conceptual modeling research is to understand, eval-
uate and learn from current practice. This can include finding out what experts 
do and comparing experts with novices. Wang and Brooks in Chapter 3 col-
lected data on the time spent on different topics by an expert and nine groups 
of students (M3). The expert project was a real consultancy project and the stu-
dent projects were also studies of real systems as part of a university course. 
This enabled comparison of the expert against the students (novice simulation 
modelers). There were, however, limitations in some of the data collection and 
as a result of the projects all being different. Carrying out this sort of research 
and getting good data is difficult. However, the results are potentially very 
valuable in learning lessons from experts, identifying differences between 
experts and novices, and comparing approaches in different domains. A 
comparison of experts and novices can provide a basis for conceptual model-
ing teaching (P5). Therefore further research could be carried out following 
modelers during projects and collecting data on what they do. An experiment 
where experts and novices tackle the same problem would provide the best 
comparison of the effect of expertise and experience. Other ways of obtaining 
data on current practice includes questionnaires or interviews, and some of 
the results from a survey of simulation experts regarding conceptual model-
ing and the modeling process are reported in Wang and Brooks (2007).

18.3 Conceptual Modeling Frameworks

A modeling framework provides a specific set of steps that guide a mod-
eler through development of a conceptual model. This characteristic 
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distinguishes modeling frameworks from principles advocating the creation 
of simple models by an evolutionary model development and/or model 
pruning (Robinson 2008).

Modeling frameworks are not new, cf. Chapter 1. Shannon (1975) pro-
poses a stepwise approach including (i) specification of the model’s purpose, 
(ii) specification of the model’s components, (iii) specification of the param-
eters and variables associated with the components, and (iv) specification 
of the relationships between the components, parameters, and variables. 
Furthermore, Nance and Pace devised frameworks that relate primarily to 
the development of large-scale models in the military domain (Nance 1994; 
Pace 1999, 2000). For simulation for modeling of operations systems, work 
on conceptual modeling frameworks is limited. Recent papers by Guru and 
Savory (2004) and van der Zee and Van der Vorst (2005) propose conceptual 
modeling frameworks in some more detail, addressing physical security sys-
tems and supply chains, respectively.

In Table 18.2 we summarize the chapters’ contributions to the development 
of conceptual modeling frameworks (M7). The table typifies framework con-
struction by the chapter title, elementary starting points underpinning the 
research, the domain being addressed, research focus, conceptual model-
ing activities addressed, actors involved, and resources offered. Conceptual 
modeling activities are related to the activities, as described by Robinson 
(Chapter 4). Actors refer to parties involved in conceptual modeling activi-
ties, as they are explicitly mentioned and considered by authors. Resources 
refer to tools, methods, and principles offering support to the actors.

Analysis of Table 18.2 allows us to set some guidelines for future research 
on the development of conceptual modeling frameworks. As a first step we 
make some observations on the construction of current modeling frame-
works, by comparing their essential characteristics.

Research starting points and focus•	 : frameworks show various alterna-
tive choices. The respective choices seem to find their origin in spe-
cific actors’ needs (P2; M8,10), i.e.:

Modeler •	 : conceptual modeling activities should be explicitly 
specified, and ordered. Execution of conceptual modeling activi-
ties should be supported by principles, methods, and tools.
Stakeholders (domain experts, staff, etc.)•	 : conceptual models should 
serve as a means of efficient and effective communication.
Programmer•	 : conceptual models should allow for an unambigu-
ous specification of model code.

Domain•	 : most frameworks start from a wide field of application. 
Furthermore, research with respect to the business and military 
domain seem to develop along separate lines. The choice of domain 
is reflected in case examples for illustrating the frameworks’ applica-
tions. However, little empirical test results are provided.
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Activities•	 : frameworks distinguish among two notions of concep-
tual modeling activities, i.e., either including or excluding problem 
understanding and modeling objectives (P1,2).
Actors•	 : approaches differ widely with their notion of actors, i.e., no 
distinct actors, a single actor, or multiple categories of actors (M7,8).
Resources•	 : there are many opportunities to make good use of soft-
ware engineering techniques in both detailing activities and sup-
portive tools.

Our interpretation of the above observations suggests a number of impli-
cations for future research. Firstly, there is a need for researchers to clar-
ify the demands underlying the construction of their frameworks. Specific 
issues concern the researchers’ choice of domain, modeling requirements (cf. 
Section 18.2), and their viewpoints on (potential) actors’ roles, interests and 
meaning for the type of projects considered (P2; M1,7,8,10). Consequently, 
more-focused frameworks may (have) to be developed—and empirically 
tested—that serve respective actors better.

Frameworks for the military and business domains seem to evolve along 
separate lines. This suggests a potential for exploiting and combining efforts 
on constructing conceptual modeling frameworks for applications in mili-
tary and business, also see Section 18.6. The same is true for the use of soft-
ware engineering techniques in supporting simulation studies (M4).

Three views on conceptual modeling activities seem to emerge. A first 
area—not mentioned in Table 18.2—addresses a deepening of the notion 
of problem understanding and modeling objectives; also see soft systems 
approaches (Section 18.4, P1). A second area studies conceptual model speci-
fication “in the small,” i.e., essentially model inputs, contents, and outputs 
(M5). Finally, a third area combines both types of activities. It starts from a 
somewhat more procedural focus, by identifying a series of key modeling 
activities, addressing a wide(r) field of application. In turn, good practices 
and tools are associated with the respective activities. The approach taken 
allows for adaptation and extension of frameworks for new insights, domain 
specifics and alternative uses (M7,8). In principle, all three views offer prom-
ising avenues for future research. In part, avenues will concern straightfor-
ward extensions of current frameworks—still very much in their infancy. 
Other avenues follow from a more grounded focus on the domain and actors 
to be addressed by the frameworks, also see above (P1,2; M1,4,5,7,8).

18.4 Soft Systems Methodology for Conceptual Modeling

Soft systems methodology (SSM) is a method that is applied to problem 
structuring, and could be used for any type of problem—it is not specifically 
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related to simulation. In a simulation study, problem structuring is usually 
the first step including identifying the problem, finding out about the system 
and setting objectives. This leads on to conceptual modeling and some of 
these tasks may even be regarded as part of conceptual modeling (depend-
ing on the definition used) (P1).

In Chapter 9, Pidd provides an overview of problem structuring approaches 
with a particular focus on SSM. He argues that these can be very important 
in making sure that the right problem is tackled, and in identifying different 
stakeholders and their point of view. This can facilitate effective communica-
tion with and involvement of the stakeholders, which can be critical for the 
ultimate acceptance of the modeling results by the stakeholders (M10).

Kotiadis describes the use of SSM in a health care simulation project in 
Chapter 10. Working with stakeholders, SSM was used to understand the 
problem situation and, in addition, certain aspects of the SSM process were 
adapted to produce the simulation objectives as an outcome. The role of 
problem structuring in helping to develop a good conceptual model is likely 
to be particularly important in complex projects. Kotiadis argues that the use 
of SSM can develop a level of trust with the client (M10) and can encourage 
creativity in the early stages of the modeling process (M9). She also states 
that there are only a few simulation papers that include the use of SSM, and 
these are mainly health care applications.

Given the limited literature on SSM in simulation, future research in this 
area could include reporting and evaluating the use of SSM and other soft 
operational research (OR) tools in simulation studies to provide greater 
knowledge of how to use them in the most effective way. It may be that some 
of the tools need to be adapted in the simulation context and that they can 
be linked directly with developing aspects of the conceptual model, as in the 
example described in Chapter 10. Much more research is also needed on the 
role of creativity in modeling.

18.5 Software Engineering for Conceptual Modeling

There are many tools and approaches that have been developed to assist the 
process of modeling a system, and a substantial section of the book is devoted 
to software engineering for conceptual modeling, which might be described 
as “conceptual engineering.” The five chapters (Chapters 11–15) mention 
many such methods and, for example, Ryan and Heavey in Chapter 12 refer 
to a survey that listed over a hundred tools (Kettinger et al. 1997). Many 
of these tools are general or intended for other modeling approaches rather 
than being designed specifically for discrete-event simulation modeling.

There is some overlap with part II of the book (conceptual modeling frame-
works) with, for example, the ABCmod framework of Chapter 6 being an 
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environment (with a software tool that is under construction) as well as a 
framework. A framework may provide a set of steps or guidelines for con-
ceptual modeling, whereas software engineering is concerned with tools to 
assist these steps.

In Chapter 11, Liston et al. term the use of tools or techniques for process 
modeling as a “modelcentric” (as opposed to a documentcentric) approach. 
They highlight the lack of a standard approach in simulation. Since the 
Unified Modeling Language (UML) attempts to provide a standard for 
software development they evaluate the potential of the Systems Modeling 
Language (SysML), which is based on UML, for conceptual modeling. SysML 
is a graphical modeling language that enables nine types of diagram to be 
produced to describe a system. Standardization by using common diagram 
formats could have benefits in enabling modelers to understand models built 
by others more easily, which would facilitate reuse, teamwork, and model 
interoperability (Willard 2007). Some SysML tools allow stepping through 
diagrams to see the sequence of activities, which can help with validation. 
However, general limitations and weaknesses of SysML discussed by Liston 
et al. in Chapter 11 include too much scope for freedom and interpretation by 
the user and a substantial learning curve to master the language.

Liston et al. describe the retrospective use of SysML for a simulation project. 
Based on this case study, they found advantages in using SysML for simula-
tion in enabling a modular approach with cross-referencing of  information, 
and in providing good knowledge management by holding the logic of the 
system. SysML also enables alternative system representations (such as sim-
plifications) to be produced by copying and editing the original, which can 
then be compared with the original. Limitations identified from use in the 
case study included not being able to include a sketch of the production facil-
ity as one of the diagrams, and the lack of certain elements that are in com-
mon use in other diagram formats. Another current limitation is that tools 
enabling the use of SysML online do not appear to be available as yet.

During conceptual modeling, the modeler needs to understand the system 
and then decide how to model it. This potentially requires two represen-
tations—one of the system and one of the model. Liston et al. suggest that 
SysML may be suitable for including both representations using its view-
point and views features.

SysML therefore has potential for assisting with several of the concep-
tual modeling tasks. However, it is a fairly new tool and so more research 
is required to assess and evaluate its usefulness for conceptual modeling 
across a range of applications. This could include the identification of addi-
tional requirements and Liston et al. suggest that model libraries may need 
to be developed for specific domains. There is also scope for research on 
improving software to make SysML easier to learn and use, and to enable 
online collaboration.

Ryan and Heavey, in Chapter 12, present their Simulation Activity Diagrams 
(SAD) for process modeling. They set out criteria for evaluating process 
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modeling tools under the main categories of the ability to describe the dif-
ferent aspects of a discrete-event system, the ease of use and understanding, 
the ability to use concepts that would be understood by system personnel, 
and the visualization capability. There is a particular focus here on the tool 
being easy to use and, with the latter two criteria, on facilitating good com-
munication with and involvement of staff in the organization (M10). From 
a review of existing process modeling tools (Ryan and Heavey 2006) they 
found that all the tools they looked at had weaknesses in at least some of 
these areas. They therefore developed the SAD technique with the aim that 
it would perform well under each of the criteria as well as supporting project 
teamwork. The technique produces a SAD diagram that includes entities, 
resources, states, actions (making up the activities and events), queues, infor-
mation, and the relationships between all these elements. The technique also 
has an elaboration language for providing additional information. Ryan and 
Heavey have also developed a prototype software application, PMS (Process 
Modeling Software), in which SAD models can be built.

Chapter 12 also describes part of one of the five case studies so far carried 
out by Ryan and Heavey to evaluate SAD and compares the SAD model with 
an IDEF3 model for the same case study. They identify various aspects of 
SAD that require further development including multiple modeling views to 
enable alternative conceptual models to be built and compared, and a step 
through facility. It also requires further usage for additional validation and 
evaluation.

In Chapter 13, Onggo emphasizes the importance of representing the 
conceptual model in a way that it can be understood easily by the differ-
ent stakeholders (M10). This matches with some of the criteria of Ryan and 
Heavey in Chapter 12. Starting from the methods for documenting a con-
ceptual model reported in a survey (Wang and Brooks 2007), he categorizes 
the methods as textual, pictorial, and multifaceted. The different categories 
are discussed and evaluated with examples from a generic hospital simula-
tion project.

Some advantages of textual representation are considered by Onggo to 
be speed and flexibility, but with the disadvantages of potential ambiguity, 
inability to use mathematical methods for verification, and possible commu-
nication problems depending partly upon how well it is written and tailored 
to the stakeholders. Pictorial representation of conceptual models is usu-
ally by diagrams, and activity cycle diagrams, process flow diagrams (using 
the business process diagram as an example) and event relationship graphs 
are discussed. In general, a picture can be very effective in helping to com-
municate complex information. The multifaceted representation consists of 
several elements and these may be a mixture of text and diagrams. Onggo 
discusses UML and SysML as examples of this.

He also describes his proposed unified conceptual model (Onggo 2009), 
which is a multifaceted approach. For describing the problem he proposes 
the use of an objective diagram with the possible addition of a purposeful 
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activity model for the objectives, an influence diagram for inputs and out-
puts, a business process diagram with text for the system contents to be 
included in the model, and text and a data dictionary for data requirements. 
The model representation depends on the type of model with an activity 
cycle diagram or event relationship graph suggested for discrete-event 
simulation, a stock and flow diagram or causal loop diagram for system 
dynamics, and a flow chart, business process diagram, or UML activity 
diagram for agent-based simulation. However, much more testing of these 
methods is required for a more complete evaluation of their usefulness in 
different circumstances.

Tolk et al. take a different focus in Chapter 14, by concentrating on model 
interoperability and composition. They define interoperability for two sys-
tems as meaning “they are able to work together to support a common 
objective” and so relates to issues such as software and exchange of data. 
Composability refers to more abstract modeling issues regarding whether 
it makes sense to combine models together (e.g., they do not have contra-
dictory assumptions). Based on these definitions they state that “interop-
erability of simulation systems requires composability of conceptual 
models.” Therefore conceptual model composability is one of the require-
ments for it to be appropriate and feasible to combine simulation models 
or systems together.

Tolk et al. consider that the goal in their area of research is for concep-
tual models to be constructed in a format that enables them to be machine 
understandable for automatic reasoning about and combining of these mod-
els. They describe the Levels of Conceptual Interoperability Model (LCIM), 
where the addition of each of six successive levels (in this order: technical, 
syntactic, semantic, pragmatic, dynamic, conceptual) enables greater inter-
operation. They consider that data engineering addresses the first three of 
these levels and part of the pragmatic level. It consists of the administration, 
management, alignment, and transformation of data and they discuss each 
of these steps. Process engineering deals with the pragmatic and dynamic 
layers and, similar to data engineering, Tolk et al. suggest the four steps of 
administration, management, alignment, and transformation. Constraint 
engineering covers the conceptual level of identifying the assumptions, con-
straints, and simplifications. For each of the three engineering methods (data 
engineering, process engineering, constraint engineering) Tolk et al. discuss 
what is required for the information to be machine readable. However, they 
conclude that “the solutions provided by current standards as described in 
this chapter are not sufficient,” indicating scope for plenty of further work 
in this area.

In Chapter 15, Tanriöver and Bilgen discuss the verification and validation 
of conceptual models built using UML. The general relationships are that the 
conceptual model can be compared with the real system to assess whether 
it is a suitable representation for the purpose of the study (validation), the 
built simulation model can be compared with the conceptual model to assess 
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whether it has been built correctly (verification), and the conceptual model 
itself can be examined and tested for certain desirable properties such as 
consistency and lack of redundancy.

Tanriöver and Bilgen review the verification and validation literature for 
simulation conceptual modeling. They note that the general verification 
and validation principles and methods for the different simulation tasks 
can be applied, but that there is a lack of literature on the internal verifica-
tion of conceptual models. They also review the literature on verification 
and validation of UML models where there are various lists of desirable 
properties, and some formal techniques and tools for different aspects of 
verification. They advocate a number of advantages of an informal inspec-
tion approach for verification of UML conceptual models rather than for-
mal methods (such as the inspection approach being easier to apply and 
understand, and more suitable for the subjective nature of conceptual 
models where the assessment may require expert evaluation). They then 
develop a systematic inspection process including looking for specific 
“deficiency patterns” in the UML diagrams, which might indicate contra-
dictions or redundancy, and carrying out a defined set of inspection tasks. 
They apply this to two case studies in the military domain. A considerable 
number of issues with the conceptual models are identified by the pro-
cess in both cases, demonstrating the potential usefulness of the method. 
Continuing the research in this area could include identifying required or 
desirable internal properties for conceptual models in UML or other lan-
guages, further development and testing of the inspection process, adding 
a risk perspective to the process, and the development of software tools to 
assist the process.

In terms of the research themes of Table 18.1, these five chapters particu-
larly focus on organizing and structuring the information about the concep-
tual model (P3), the use of software engineering techniques (M4), and model 
representation methods (M5).

Combining the comments in these chapters, there are various characteris-
tics of software tools that are desirable in some or all circumstances:

Quick to learn•	
Easy to use•	
Enable all aspects of the conceptual model to be captured•	
Enable the conceptual model to be changed easily•	
Enable alternative conceptual models to be compared•	
Produce suitable documentation that is easy to understand•	
Good visualization features•	
Facilitate online collaboration•	
Facilitate reuse, interoperability, and composition•	
The data are machine readable•	
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There is potential for considerable further research on investigating the rela-
tive importance of these characteristics (and possibly others), and testing, 
evaluating, and developing new and existing tools. Another area is to inves-
tigate whether it is feasible, or even desirable, to enable the automatic genera-
tion of model code using the software tools.

18.6 Domain-Specific Conceptual Modeling

Part V of the book discusses domain-specific conceptual modeling and con-
siders two important fields of application: military and business. Chapter 16 
reviews progress made on conceptual modeling for simulation within the 
military domain, whereas Chapter 17 addresses approaches for model sim-
plification in semiconductor manufacturing.

In Chapter 16, Pace makes clear how much of the progress on conceptual 
modeling for simulation in the military domain may be related to discus-
sions within the Simulation Interoperability Standards Organization (SISO). 
Starting from the respective discussions, he distinguishes between three 
(interacting) main streams of conceptual modeling, i.e.:

Functional descriptions of the mission space, i.e., abstraction of the •	
real-world activities associated with a particular mission.
Simulation conceptual modeling as expressed in the DoD •	
Recommended Practices Guide (RPG) for modeling and simulation 
(M&S) verification, validation, and accreditation (VV&A).
Conceptual modeling for a collection of simulation applications •	
working in concert.

Starting from a thorough historical review of developments on standards, 
methods, and tools supporting the three streams, Pace isolates a number of 
persistent problems impacting simulation related conceptual modeling the-
ory and practice:

Frequent failure in producing an explicit and distinct conceptual •	
model as an artifact. Pace points out that there may be three rea-
sons for this: (i) a lack of professionalism (P5), (ii) the existence of 
contracts being unclear on the need for a conceptual model, and 
(iii) the lack of a widely accepted standard paradigm for simula-
tion development and modification, including the conceptual 
model as one of its artifacts (M7). This is found especially true for 
single simulations. For combinations of simulations such a para-
digm exists.
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The diversity of simulations hinders guidance in being prescriptive •	
(M7).
Excessive expectations with respect to the descriptive power of for-•	
mal approaches. Typically they only work well for specific domains 
(M4).
Resource limitations.•	

Pace’s suggestions for future research—derived from the above observa-
tions—include approaches being tailored toward more-specific domains 
and the need for a commonly accepted framework for simulation model 
development—which includes conceptual modeling as a productive phase 
(M4,7,8). The precision of a restricted domain may be helpful in specifying 
the information content of the conceptual model in greater detail. This would 
allow methods to become more prescriptive, and therefore more support-
ive in model specification. Composable formal approaches, i.e., approaches 
which may be tailored to a more narrow field of interest, may underlie such 
methods (M4,5).

Sprenger and Rose (Chapter 17) address model simplification for semicon-
ductor manufacturing. Semiconductor manufacturing is considered one of the 
fastest growing industries in the world today, due to a strong growth on the 
use of integrated circuits for networking, storage components, telecommuni-
cations/wireless, consumer, computer, and storage systems. Semiconductor 
manufacturing systems are among the most complex production systems 
due to the intricate manufacturing processes involved as well as product 
variety, and short product life cycles (Mathirajan and Sivakumar 2006). In 
turn, system complexity sets high demands on simulation model simplifica-
tion in order to guarantee model feasibility.

Sprenger and Rose make clear how a model of complex systems such as 
semiconductor fabs may be simplified in a systematic way by leaving out/
simplifying shop floor elements (M6). They distinguish among three steps:

 1. Redefining the shop configuration by focusing on the bottleneck 
and/or heavy loaded systems, while replacing the remainder of the 
shop by one or more dummy machines.

 2. Modeling the dummy machines by delay functions expressed in 
terms of statistical distributions.

 3. Calibrating the choice and parameters of distributions based on 
shop system characteristics such as utilization and product routing.

Note how an iterative pattern is foreseen for steps 1–3, as there may be no a 
priori fit of the simplified model.

In their study, Sprenger and Rose illustrate the need and means for model 
simplification in a specific context. Relevance of such approaches is increasing 
due to growing complexity of business configurations. This suggests room 
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for more elaborate methods of simplification (M6). Typically, they will start 
from basic techniques for model simplification (cf. Chapters 1 and 2), which 
are combined, extended, and/or detailed for a specific domain of interest. As 
an essential feature methods should address procedures for testing the fit of 
the simplified model.

18.7  The Current State of Conceptual Modeling and 
Future Research

The work reported in this book addresses most of the research themes listed 
in Table 18.1 to some extent, as shown by the chapter references in the table. 
The only themes with no references are P4, M11, and M12.

Theme P4 refers to considering different sources of information about the 
problem and how they might be used. The chapters on SSM (Chapters 9 and 
10) do include methods for problem structuring, and many of the chapters 
in the book are concerned with how to analyze and organize the concep-
tual model data. What seems to be missing is the identification of different 
sources that are or might be used and the benefits and issues with each. A 
starting point would be the analysis of the information currently used for 
understanding the problem and the system. There is some information on 
this in the survey results of Wang and Brooks (2007).

Theme M11 is concerned with how other modeling tasks have an impact on 
the conceptual model. Many chapters consider the impact of the conceptual 
model on subsequent tasks, but not the iteration that often takes place whereby 
the conceptual model is revised as a result of work on later tasks. Again, in 
fact, there are some results on this in the Wang and Brooks (2007) survey.

Theme M12 looks at comparing how the expected life of a model affects 
conceptual modeling. This is not explicitly addressed by the research 
described in this book, but it is implicit in the work being carried out in the 
different modeling domains—especially military and business. A related 
theme is comparing different models in the same problem domain (M2), but 
this is only addressed in the book to a limited extent by a small-scale experi-
ment in Chapter 2.

Some of the other themes only have a small amount of coverage in the 
book. In particular M9 about exploring creativity in modeling is only cross-
referenced to Chapter 9 where it is suggested that SSM can promote creative 
thinking. Among the other themes, M2 and M3 are also only cross-referenced 
to one chapter each. By contrast, there are seven themes cross-referenced to 
five or more chapters (P2, P3, M1, M4, M5, M7, M10).

Overall, the fact that this book includes some research taking place under 
14 out of the 17 themes indicates promising progress in conceptual mod-
eling research and reflects greater interest in this area over recent years. 
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Nevertheless, the discussions in this chapter show that there are many 
unanswered questions and opportunities for further research under all the 
themes in Table 18.1. Conceptual modeling is a vital step in any simulation 
project and research on it has the potential for making great contributions to 
the success of simulation studies. We hope that this book will help to inspire 
further research on the important topic of conceptual modeling for discrete-
event simulation.
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(CASE) tools, 288

Computer-based simulation model, 25
Conceptual modeling, 3, 473, 489

activities, views on, 480
characteristics and application 

context
DCMF and FOI, 430
FCM, 432
FEDEP, 432
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federation requirements, 433
M&S specifications, 433
simulation space, 432

choice of best model, 32
spatial and time scales, 32–33

comparison, 205–207
components

inputs and outputs, 11–12
model content, 11–12
objectives, 11–12

definitions, 4, 10–14
debate about, 9

evaluation of performance, 33
future use of model, 34–36
resources required, 34–36
results, 34–35
verification and validation, 34–36

facets of, 10
foundations of, 475–476
four-stage approach, 24
framework, 476

activities, 480
actors, 480
classification, 478–479
domain, 477
for military and business 

domains, 480
research starting points and 

focus, 477
resources, 480

and future research, current state
Theme M11, 488
Theme M12, 488
Theme P4, 488

guidance on
methods of simplification, 23–24
modeling framework, 24–25
principles for, 22–23

and iteration, 13
level of detail and complexity, 36–39

measuring, 40–42
model performance and, 42–46

model design, 15
notion of, 8
outcome of, 32
performance elements, 32
phases

context definition, 182
developing content, 182

problem situation, 182
representation, 182

“possibility” factor, 15
purpose of, 14–16
qualities of effective model, 16
real-life projects, 59
requirements

accuracy, 17
documented in literature, 18
measurable and assessment 

criteria, 16
overarching, 20
simplicity and transparency, 21
utility and feasibility, 17, 19
validity and credibility, 17

research themes for, 474
Robinson’s work and, 182
RPG and FEDEP FCM, 433

content, 437–439
documentation format, 439–440
federate and federation 

conceptual models, functions, 
436–437

list of information in, 438
simplifications of reality, 8
simulation and operational 

research, 32
in simulation project life cycle, 11
software

BPMN and IDEF1X, 183
implementation, 15
KnowledgeMetaMetaModel 

(KM3), 183
UML and SysML, 183
use in, 14

software engineering for
built simulation model, 484–485
composability, 484
criteria for evaluating process, 

482–483
discrete-event simulation 

modeling, 481
interoperability for two 

systems, 484
LCIM, 484
multifaceted representation, 483
pictorial representation of, 483
PMS, 483
SAD technique with, 483
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standardization, 482
tools, 485
UML and SysML, 482
verification and validation 

principles, 485
SSM for, 25, 480

operational research (OR) tools 
in, 481

working with stakeholders, 481
step of problem formulation, 32
templates for, 24–25
understanding of problem 

situation, 11
uses of

problem domain, 180–181
requirements analysis and design 

phases, 181
in simulation system development 

lifecycle, 180
software design and 

implementation decisions, 181
verification, validation and 

accreditation activities, 181
validation activities, 14
well-documented, 15–16

Conceptual modeling processes
artifacts of, 257
and assumptions, 257
DES and PAM, 258–259
in knowledge acquisition and 

abstraction, use of, 258–259
phases, 256
simplification, process of, 257
SMEs, 257

Conceptual Model of Mission Space 
(CMMS), 425, 427–428

components of, 196
mission spaces and, 196
objectives, 196
project, 182

goal of, 195–196
steps in conceptual model 

development, 196–197
Conceptual model representation 

methods
ACD and UML, 338
communicative model, 338
DGHPSim, 339
diagrams used in, 347

discrete-event simulation, 339
and model-domain components, 

338–339
pictorial representation

ACD, 341–343
ERG, 344–345
process flow diagram, 343–344

problem-domain components, 338
simulation-modeling 

paradigm, 339
system dynamics, 339
textual representation, 340–341
thinking process, 337

Conditional Action
state change, 156
template for, 156

Constraint engineering, 372, 376
assertion lists, comparing, 375
capture assertions, 374
encode propositions, 374–375
evaluating compatibility of assertion 

lists, 373
proposition of, 374
referent, 374
scope, 374
use function, 374

Constructs
action

conditional and scheduled action, 
156–157

events, 155
features of, 156

activity, 150
activity instance, 152
ActP disrupts, 154
ActQ, 154
conditional, 151
data modeling stage, 152
DEDS domain, 151
Extended Activity, 154
Extended Triggered Activity, 155
FALSE value, 152
phases of, 151–152
“PRE.ActQ,” 154
scheduled, 151
SCS, 151
state changes, 152
template for, 153
termination time and event, 152
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Triggered Activity, 153
TRUE value, 152
type of task, 151
types of, 152

Contact and Response Centers (CaRCs) 
and root definition, 246

actors, 247
customers, 247
environmental constraints, 248
ownership, 248
stakeholders, 247
transformation, 248
Weltanschauung, 248

Contents of model
assumptions, 12–13
code for, 13
level of detail, 12
scope and level of detail, 

determining
activities, 85
data analysis, 89
effect on credibility, 87
entities, 85
feasibility, 87
issue of utility, 87
judgment, 89
past experience, 89
prototyping, 89
queues, 85
resources, 85
step 1, 86
step 2, 86
step 3, 86–87

scope of model, 12
simplifications, 12–13

Control elements, 105
COTS tools, see Commercial off-

the-shelf (COTS) tools
Creation model

simulation analyst
approaches, 107
architecture, 108
control logic, 108
elementary system elements, 107
framework, 108
guidance for, 108
guiding principles, 107
identifying and 

classifying, 108

implicit/explicit guidelines, 
106–107

methods of simplification, 107
model accuracy, 107
modeling frameworks, 107
modeling task of, 106
real-life systems, 108
simulation software, 107

Credibility of conceptual modeling, 17
CRM, see Common reference model 

(CRM)
Cycle time distribution, 460

with interarrival time approach, 460
characteristic curve chart, 465
different dispatch rules during 

big breakdown, 468
disadvantages, 467
minimizing adjustment time, 

465–466
modeling interarrival times, 

461–463
modeling overtaking, 466–468

products, deviations of, 464

D

Data collection in conceptual modeling
expert project, 59–60
findings and analysis

pattern of task overlapping, 66
proportion of time spent on each 

topic, 67
verification and validation, 66

novice projects
phase 1 study, 60–61
phase 2 study, 61

results for expert
percentage of lines devoted to 

each topic in Willemain’s 
experiments, 63

proportion of time spent on each 
topic, 62

relative time spent by, 64
timeline plot for, 62
Willemain’s data, 63

results for novices
pattern of plot, 66
proportion of time spent on 

topics, 64–65
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timeline plot for, 65
Willemain’s experiments, 66

simulation tasks
alternative potential projects 

identification, 61
black box validation, 61
contact/interview with client, 61
data collection, 61
decide model structure, 61
discuss with experts, 61
experiment with model and 

analyze result, 61
model coding, 61
observe system, 61
parameter estimation and 

distribution fitting, 61
report writing, 61
set project objectives, 61
verification, 61

Data engineering and model-based data 
engineering, 358

administration, 367–368
alignment, 369
information exchange modeling, 

domains, 366
management, 367–368
MBDE and CRM, 367
MDR standard, 365
NCOBP, 364–365
transformation, 370

Data Interchange Format (DIF), 200
Data modules, 162; see also ABCmod 

conceptual modeling 
framework

derives, 163
EntityStructureName, 163
GroupName, 163
InsertGrp, 163
InsertQueHead, 163
leave(Ident), 163
QueueName, 163
RemoveGrp, 163
template for, 163
terminate, 163
value, 163

Data requirements identifying, 94
contextual data, 95
experimental factors, 95
model parameters, 95

model realization, 95
sensitivity analysis, 95
validation, 95

DCMF, see Defense Conceptual 
Modeling Framework (DCMF)

Decomposition principles, 105
class definitions, relationships and 

hierarchies, 113–114
types of elements

executing jobs, 112
external and internal entities, 110
infrastructure, flows and jobs, 111
intelligent and nonintelligent 

entities, 111
movable and nonmovable entities, 

110–111
physical, information and control 

elements, 111–112
queues and servers, 111

DEDS, see Discrete-event dynamic 
systems (DEDS)

Defense Conceptual Modeling 
Framework (DCMF), 197, 
428, 430

KM3 specification, 199
knowledge acquisition (KA), 198
knowledge modeling (KM), 199
knowledge representation (KR), 

198–199
knowledge use (KU), 199
phases of, 198
structured knowledge, 198

Defense Modeling and Simulation 
Office (DMSO), 9, 424

Department store shoppers
behavior, 142
conceptual model view, 141

Derived scalar output variable 
(DSOV), 161

DES, see Discrete-event 
simulation (DES)

Design-oriented model, 9
DGHPSim, see District General Hospital 

Performance Simulation 
(DGHPSim)

DIF, see Data Interchange Format (DIF)
Digraphs, 98
Discrete-event dynamic systems 

(DEDS), 134
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Discrete-event simulation (DES), 258
model, 25

Distributed interactive simulation (DIS)
workshops, 424

Distributed Simulation Engineering and 
Execution Process (DSEEP), 429

District General Hospital Performance 
Simulation (DGHPSim), 339

DMSO, see Defense Modeling and 
Simulation Office (DMSO)

Document Object Model 
(DOM), 392

DOM, see Document Object 
Model (DOM)

Domain analysis, 106
Domain modeling, 429
Domain-oriented model, 9
Domain-specific conceptual 

modeling, 488
functional descriptions 

of, 486
pace

theory and practice, 
486–487

RPG and M&S, 486
semiconductor manufacturing, 487
VV&A, 486

Domain-specific framework, 25
DSEEP, see Distributed Simulation 

Engineering and Execution 
Process (DSEEP)

DSOV, see Derived scalar output 
variable (DSOV)

E

EATI, see Entities, actions, tasks, and 
interactions (EATI)

Engineering methods
constraint engineering, 372, 376

assertion lists, comparing, 375
capture assertions, 374
encode propositions, 374–375
evaluating compatibility of 

assertion lists, 373
proposition of, 374
referent, 374
scope, 374
use function, 374

data engineering and model-based 
data engineering

administration, 367–368
alignment, 369
information exchange modeling, 

domains, 366
management, 367–368
MBDE and CRM, 367
MDR standard, 365
NCOBP, 364–365
transformation, 370

process engineering
administration, 372
alignment, 372
effects, 371
halting requirements, 371–372
initialization requirements, 371
management, 372
postconditions, 372
time, 371
transformation, 372

Entities, actions, tasks, and interactions 
(EATI), 427

Entity structure; see also ABCmod 
conceptual modeling 
framework

attribute, 149
characterization of 

Group, 148
Consumer entity, 148
generic form, 148–149
identifiers, 145

format for, 146
Resource Set[2]: Tugboat, 146
Resource Unary: Tugboat, 146
Tugboat entity, 146
X.Name, 146

Queue entity, 148
Resource entity, 148
role and scope, 144–145
tabular format, 148
template for specifying, 149

Event graphs, 98
Executable model, 9
Experiment on model characteristics 

and performance, 47–48
process diagrams of, 49
results from, 50–52

Expert project data, 62–63
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Extended Activity, 155
template for, 154

Extended Triggered Activity
template for, 155

External entities, 110

F

FCFS, see First come first serve (FCFS)
FCM, see Federation conceptual model 

(FCM)
FDMS, see Functional Description of 

Mission Space (FDMS)
Feasibility of conceptual modeling, 

17, 19
FEDEP, see Federation Development and 

Execution Process (FEDEP)
Federation conceptual model (FCM), 425
Federation Development and Execution 

Process (FEDEP), 425, 429, 432
architecture, 192
conceptual analysis, 192–195

steps in, 194
content, 437–439
documentation format, 439–440
federate and federation conceptual 

models, functions, 436–437
high-level process flow, 193
for HLA, 191–192
list of information in, 438
objectives, 192
RPG simulation conceptual model 

and, 433
Federation Object Model (FOM), 428
First come first serve (FCFS), 118
First Order Logic (FOL), 392
Flexibility of conceptual 

modeling, 17, 19
Flow items, class in modeling 

framework, 112, 114
FOL, see First Order Logic (FOL)
FOM, see Federation Object Model 

(FOM)
Ford Motor Company

data requirements, 95–96
engine assembly

components, 6
Final Dress area, 5–6
Hot Test facility, 5–6

layout of, 5
line, 5
operations, 6
outputs, 7
required throughput, 7

experimental factors determining, 84
modeling and general project 

objectives, 81
modeling assumptions and 

simplifications, 94
model level of detail, 91–93
model scope, 88
problem situation understanding, 

78–79
process flow diagram of, 97
responses determining, 82–83
simulation modeling, 5

Formal problem structuring 
methods, 238

characteristics, 239
methods

decision analysis, 239
drama theory and confrontation 

analysis, 239
robustness analysis, 239
SODA (cognitive mapping), 239
soft systems methodology, 239
strategic choice approach, 239
system dynamics, 239
viable systems modeling, 239

Framed decomposition principles, 112
Framework for developing conceptual 

model, 74
activities, 75
alterations in, 76
approaches, 107
assumptions and simplifications, 75–76
construction

classes and hierarchies, 112–115
decomposition principles, 110–112
experimental frame and model, 109

enhancing participation applying, 
case study, 117

agents planning and 
repairStation, 120, 122

choice of simulation 
software, 126

class library and class repair 
shop, 121
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completeness and transparency, 
124–125

conceptual model, 119
field of application, 126
guidance in modeling, 123–124
model coding, 119
objectives of, 118
repair shop, 118
system description, 118–119

modeling objectives, 76
purpose of model outputs, 76
result of, 105

Framework for simulation conceptual 
modeling, 73

for experienced modelers, 74
for novice modelers, 74

Frameworks of models, 24
Functional Description of Mission Space 

(FDMS), 425

G

Generators, 116
Government Accounting Office 

(GAO), 427
Graph theory, complexity of model 

measuring, 40, 42
information entropy, 41

H

High level architecture (HLA), 10, 191, 
384, 424

Human activity systems
characteristics

boundaries, 241
components, 241
human activity, 242
human intent, 242
internal organization, 241
limited life, 242
openness, 241–242
self-regulation, 242

I

Informal problem structuring, 236–237; 
see also Problem structuring 
methods (PSMs)

Input–output behaviors, 8–9
Inputs of model

identification of
data entry, 84
data files, 84
experimental factors, 83
model-based menus, 84
model code, 84
production schedule, 83
staff rosters, 83
third party software, 84

Inspector, 384
Interactive networked simulation for 

training, 424
Intermediate care (IC) health system, 

case study
abstraction and, 266–268
actors, 266
customers, 266
environmental constraints, 267
3 Es, 267
knowledge acquisition, 263, 

265–266
ownership, 267
PAM, 262–263, 267–268
PMM, 268–269
political system 

analysis, 262
rich pictures, 261
role analysis, 261–262
root definition (RD), 267
simulation study objectives, 

determination of, 
268–269

social system analysis, 262
transformation process, 266
Weltanschauung, 267

Internal entities, 110
Iterative process, 180
Iterative waterfall software life-cycle 

model, 214

J

Jobs, class in modeling framework, 
112, 114

definition, 116
Journal of the Operational Research 

Society, 238
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K

KAMA conceptual modeling 
framework, 183

command hierarchy diagram with 
redundancy, 409

KAMA method
entity state diagrams, 184
flow diagram for, 185
knowledge acquisition 

(KA), 184
mission space, 184
mission space diagrams, 184
task flow diagrams, 184

KAMA notation
Foundation package, 186
metamodel diagram of, 186
metamodel elements, 187
Mission Space package, 186
Structure package, 186

KAMA tool, 191
package hierarchy, 188
sample mission space, 187–191
task flow diagram examples, 410

KIRC, see Knowledge Integration 
Resource Center (KIRC)

Knowledge acquisition (KA), 184
Knowledge Integration Resource Center 

(KIRC), 428
KnowledgeMetaMetaModel 

(KM3), 183

L

Levels of conceptual interoperability 
model (LCIM), 362, 484

levels of interoperation
conceptual level, 364
dynamic level, 363
evolution, 363
pragmatic level, 363
semantic level, 363
syntactic level, 363
technical level, 363

Lexicon component, 200
Life cycle and model verification, 11
Local intelligence, 116
“Lumped model,” 8–9

lumping of, 23

M

Mathematical model, 31
MBDE, see Model-Based Data 

Engineering (MBDE)
MDR standard, see Metadata Registry 

(MDR) standard
MDSD tool, see Model Driven Software 

Development (MDSD) tool
Measurement and Improvement of 

Manufacturing Capacities 
(MIMAC), 456

Message Handling Centre, software 
project life cycle and

cost-effective way, 223–224
design of, 223
requirements analysis, 224
simulation activities

disadvantages, 225–226
simulation design

requirements, 226–227
simulation structure, 224–225

Metadata Registry (MDR) standard
conceptual domain, 365
property

domain, 365–366
instances, 366
value domain, 366

Meta Object Facility (MOF), 393
Micro Saint Sharp software, 59
Military simulation 

modelers, 10
MIMAC, see Measurement 

and Improvement of 
Manufacturing Capacities 
(MIMAC)

Minimizing adjustment time
application of methods, 466
nonlinear regression, 465
regression over regression, 466

Mission space, 182
sample, 189

extending missions, 187
extensionId information, 191
objectives, 187
performanceCriteria 

attribute, 188
report, 191
task flow diagrams, 188, 190–191
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Model-based complex systems
conceptual modeling for 

compositions
BOM and SISO standards, 364
LCIM, 362–364
machine-based understanding, 

361–362
mapping, 362
metamodels, 362
perception, 362
semantically rules, 360
semiotic triangle, 360–361

engineering methods
constraint engineering, 372–376
data engineering and model-

based data engineering, 
364–371

process engineering, 371–372
interoperability and 

composability, 358
working definition for, 359

ontological means, technical and 
management aspects, 376, 378

spectrum and methods, 377
Model-Based Data Engineering (MBDE), 

358, 367
Model Driven Software Development 

(MDSD) tool, 395
Modeler, 384
Modeling and Simulation Coordination 

Office (M&S CO), 424
Modeling and simulation (M&S), 

356–357, 486
Modeling interarrival times

interarrival between
all lots, 461
lots of same product, 

462–463
lots with all combinations of 

products, 462
Modeling overtaking, 466

products, deviation of, 468
simple model with, 467

Model mapping template 
component, 202

Entity Type Mapping and Event Type 
Mapping, 203

event type, 203
HLA parameters, 203

Models used in experiment, process 
diagrams, 49

MOF, see Meta Object Facility (MOF)
Movable and nonmovable entities, 

110–111
M&S, see Modeling and simulation 

(M&S)
M&S CO, see Modeling and Simulation 

Coordination Office (M&S CO)
Multifaceted representation, 345

UMl and SysML
OMG, 346

unified conceptual model
contents component, 350–351
data requirement component, 351
diagrams used in, 347
inputs and outputs component, 

349–350
model-dependent component, 352
objectives component, 347–349

N

NATO Code of Best Practice 
(NCOBP), 364

data
administration, 365
alignment, 365
management, 365
transformation, 365

“Natural” model building 
environment, 111

NCOBP, see NATO Code of Best Practice 
(NCOBP)

O

Object constraints language (OCL), 390
Objectives of modeling

components
achievement, 79
constraints, 80
performance, 80

consideration for, 80
ease-of-use, 81
flexibility, 81
model/component reuse, 81
run-speed, 81
visual display, 81
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development and use, 79
organizational aims, 79
run-speed of simulation, 80
timescale, 80

Object Management Group (OMG), 
282, 346

Object models, 98
Object orientation, 104
OCL, see Object constraints 

language (OCL)
OMG, see Object Management 

Group (OMG)
One-to-one mapping of real-world 

concepts, 104
Ontological means

technical and management 
aspects, 376

spectrum and methods, 377
Open architecture, 106
Operating system

functions of, 4
Operational research (OR), 58
Operations, 128
Outputs/responses of model

identification of
graphical reports, 82
numerical data, 82
purposes, 82

Overarching requirements of 
conceptual modeling, 20

P

Package diagram, 285
PAM, see Purposeful activity model 

(PAM)
Parametric diagram, 285
Performance measurement model 

(PMM), 268–269
Persistent problems

diversity of applications
Divide and conquer principle, 444

expectations for simulation-related 
conceptual modeling, 444–445

failure to develop explicit and 
distinct simulation related 
conceptual models, 442

development/modification 
contracts, 443

lack of standard paradigm for, 443
M&S practitioners, 443
simulation developers, lack of 

professionalism, 443
Journal of Conceptual Modeling, 442
resource limitations, 445

Petri Nets, 107
Pictorial representation

ACD, 341–343
ERG, 344–345
process flow diagram, 343–344

BPMN, 343
business process diagram, 344
VIMS and BPD, 343

Piecewise constant (PWC) time 
functions, 158

PMM, see Performance measurement 
model (PMM)

PMS, see Process Modeling Software 
(PMS)

Principles of modeling, 22–23
model simple–think complicated, 58

Problem situation, 76
scenarios

client and domain expert 
views, 77

developing understanding, 77
grasp of cause and effect 

within, 77
soft systems methodology, 78
understanding and expression, 78

Problem-specification process, 179
Problem structuring methods 

(PSMs), 233
complementarity, 234–236
features of

continuous, 237
hierarchical features, 237
inclusive, 237
informal, 237

informal problem, 236
views of, 234
wicked problems, 234

Process diagrams of models used in 
experiment, 49

Process engineering
administration, 372
alignment, 372
effects, 371
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halting requirements, 371–372
initialization requirements, 371
management, 372
postconditions, 372
time, 371
transformation, 372

Process flow diagrams, 98
BPMN, 343
business process diagram, 344
VIMS and BPD, 343

Process Meta Language 
(PROMELA), 396

Process modeling methods
ACDs discrete-event–system logic, 

312–313
branching logic, 314
descriptive methods, 312
DEVS formalism, 312
EDPCs graphical process modeling 

technique, 313
formal methods, 312
GRAI model, 313
IDEF0 graphical modeling 

technique, 313
IEM technique, 313
RADs visual modeling 

technique, 313
SAD, 315
tools, 310–311
UML statecharts, 314

Process Modeling Software (PMS), 
321, 483

PROMELA, see Process Meta Language 
(PROMELA)

Prototyping, 89
PSMs, see Problem structuring methods 

(PSMs)
Purposeful activity model (PAM), 258

conceptual model, 262
criterion of Efficiency, 263
root definition, 262
SSM tools use, 262

Purposeful activity models (PAMs), 299
PWC time functions, see Piecewise 

constant (PWC) time functions

Q

Queues and servers, 111

R

Real system, 179–180
Real-world problem situation, 242

political analysis, 243
social analysis, 243
understanding, 243

Recommended Practice 
Guide (RPG), 486

for M&S VV&A, 429
simulation conceptual model and 

FEDEP FCM
content, 437–439
documentation format, 439–440
federate and federation 

conceptual models, functions, 
436–437

list of information in, 438
unmet desire for prescriptive 

approach, 433–435
Relative cycle time distribution, 464
Repair shop, case study

added value of domain-specific 
modeling framework

completeness and transparency, 
124–125

field of application, 126
guidance in modeling, 123–124

choice of simulation software
object-oriented simulation 

language, 126
conceptual model

building, 119
domain modeling framework, 119
job planner, 119

model coding, 119
external and internal agents, 121
flow items, 120–121
InputBufferScheduler, 123
job, 123
JobExecutionProc, 123
JobQueue, 123
planning and RepairStation, 122
TransformerGoods, 123
TransformerSignals, 123

objectives of, 118
scheduling system

choice of priority rule, 118
frequency, 118
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number of work cells, 118
shortest processing time rule, 118

system description, 118–119
Representation methods for conceptual 

model
ACD and UML, 338
communicative model, 338
DGHPSim, 339
diagrams used in, 347
discrete-event simulation, 339
and model-domain components, 

338–339
pictorial representation

ACD, 341–343
ERG, 344–345
process flow diagram, 343–344

problem-domain components, 338
simulation-modeling 

paradigm, 339
system dynamics, 339
textual representation, 340–341
thinking process, 337

Requirements diagram, 285
Robinson’s framework

conceptual modeling 
process, 204

ease-of-use and run-speed, 204
experimental factors, 204
flexibility, 204
model

as art and states, 205
inputs and outputs, 204
scope and model’s level of detail, 

204–205
modeler’s mental model, 205
modeling activity, 204
modeling application at Ford Motor 

Company engine assembly 
plant, 205

simulation study, 204
Root definition; see also Soft systems 

methodology (SSM)
actors, 245
Contact and Response Centers 

(CaRCs), 246
actors, 247
customers, 247
environmental constraints, 248
ownership, 248

stakeholders, 247
transformation, 248
Weltanschauung, 248

customers, 245
environmental constraints, 246
ownership, 246
for simulation study, 249–250
for support of conceptual modeling, 

250–251
transformation process, 245–246
use of, 246
Weltanschauung, 246

S

SAD, see Simulation Activity 
Diagrams (SAD)

Scheduled Action
template for, 156–157

SCM, see Simulation conceptual 
modeling (SCM)

SCS, see Status Change 
Specification (SCS)

SEDEP, see Syntactic Environment and 
Development and Exploitation 
Process (SEDEP)

Sequence diagram, 285
Shortest processing time rule (SPT), 118
Simple models

advantages with, 20
required characteristics for 

calibrating, 457–458
Simple scalar output 

variable (SSOV), 161
Simplicity of conceptual modeling, 

21, 46–47
Simulation

analyst
approaches, 107
architecture, 108
control logic, 108
elementary system elements, 107
framework, 108
guidance for, 108
guiding principles, 107
identifying and classifying, 108
implicit/explicit guidelines, 

106–107
methods of simplification, 107
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model accuracy, 107
modeling frameworks, 107
modeling task of, 106
real-life systems, 108
simulation software, 107

practitioners
computing, 232
modeling, 232
statistical methods, 232

study role, 4
Simulation Activity Diagrams (SAD), 98

action list
discrete-event system, 315
graphical representation of, 316

elaboration
structured language, 321

evaluation, case study, 322
ACD and Petri Net approach, 331
carburising jig, schematic of, 323
EDPC style of modeling, 331
elaboration of SAD model, 

326–329
IDEF3 model of work region 2, 330
IDEF3 process description 

method, 329–331
model, 324, 329
physical system, 324
PMS software, 321, 324, 329
pre-jig building operations, 

323–324
RAD viewpoint, 332
six-sectioned “spider,” 322
system description, 322–324
technique from currently 

available techniques, 
differentiation, 331–332

“tier,” 322
trays, 322
of work region 2, 325

frame element, 319
link types, 319
modeling primitives

actor auxiliary element, 317
“AND” branch in, 317–318
auxiliary resource element, 317
branching elements, 317
entity element, 316
informational element, 316
informational state element, 317

“OR” branch in, 318–319
primary resource element, 316
queue modeling element, 316
supporter auxiliary element, 317
“XOR” branch in, 318

model structure, 319–320
for process modeling, 482–483

Simulation conceptual 
modeling (SCM), 425

Simulation Interoperability Standards 
Organization (SISO), 199, 
364, 424

Simulation Interoperability Workshop 
(SIW), 424–425

conceptual model study group, 440
DSEEP model development, 442
FEDEP, 441–442
STORM, 441

Simulation modeling, 31
complexity and accuracy, 20–21
computer-based, 25
development

methods of simplification, 107
modeling framework, role in 

supporting, 106
principles of modeling, 107

methods of simplification
Zeigler’s ideas, 23–24

representing
activity cycle diagrams, 98
digraphs, 98
event graphs, 98
object models, 98
process flow diagrams, 98
simulation activity 

diagrams, 98
unified modeling language, 98

SRE approaches, 24
SSM, 25

SISO, see Simulation Interoperability 
Standards Organization (SISO)

SIW, see Simulation Interoperability 
Workshop (SIW)

SMEs, see Subject matter 
experts (SMEs)

Soft systems methodology (SSM), 
25, 256, 299

approach, 240
benefits
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DES model, 272
functional fixation, 272–273
transparency in, 272

characteristics
behavior, 241
boundaries, 241
components, 241
human activity, 242
human intent, 242
internal organization, 241
limited life, 242
openness, 241–242
self-regulation, 242

conceptual modeling processes
artifacts of, 257
and assumptions, 257
DES and PAM, 258–259
in knowledge acquisition and 

abstraction, use of, 258–259
phases, 256
simplification, process of, 257
SMEs, 257

description of, 240
implementation of study, 269

adaptation, 270–271
model development, 270
PAM, 270
PMM, 271

intermediate health care, case 
study, 259

abstraction and, 266–268
actors, 266
customers, 266
environmental constraints, 267
3 Es, 267
knowledge acquisition, 263, 

265–266
ownership, 267
PAM, 262–263, 267–268
PMM, 268–269
political system analysis, 262
rich pictures, 261
role analysis, 261–262
root definition (RD), 267
simulation study objectives, 

determination of, 268–269
social system analysis, 262
transformation process, 266
Weltanschauung, 267

operational research (OR) tools 
in, 481

overview of, 241
power-interest grids, 244–245
real-world problem situation, 243
root definition

actors, 245
customers, 245
environmental constraints, 246
ownership, 246
transformation process, 245–246
Weltanschauung, 246

simulation study objectives, 271
working with stakeholders, 481

Software engineering for conceptual 
modeling

built simulation model, 484–485
composability, 484
criteria for evaluating process, 

482–483
discrete-event simulation 

modeling, 481
interoperability for two systems, 484
LCIM, 484
multifaceted representation, 483
pictorial representation of, 483
PMS, 483
SAD technique with, 483
softwares

BPMN and IDEF1X, 183
implementation, 15
KnowledgeMetaMetaModel 

(KM3), 183
UML and SysML, 183
use in, 14

standardization, 482
tools, 485
UML and SysML, 482
verification and validation 

principles, 485
Software project life cycle

design document
contents, 218–219
detailed design, 221
inputs and outputs, 221–222
method of analysis, 219–220
overview of system to be 

modeled, 219
purpose of, 218
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purpose of development, 219
simulation structure, 220–221
stakeholder, 219
system perspective, 219

example of use
Message Handling Centre, 

223–227
implementation, 222
requirements document, 214

and constraints, 217
contents of, 215
desirable, 215
mandatory, 215
optional, 215
overview of system to be 

modeled, 217
purpose, 215
specific requirements, 217–218
stakeholders, 216
statements, 216
study objectives, 216–217
system perspective, 217

requirements phase, 213
stages

design, 212
implementation, 213
requirements, 212
use, 213
validation, 213
verification, 213

validation, 223
verification, 223

Software Quality Assurance (SQA), 
386–388

Software requirements engineering 
(SRE) approaches, 24

SPO, see Subject-Predicate-Object (SPO)
SPT, see Shortest processing time rule 

(SPT)
SQA, see Software Quality Assurance 

(SQA)
SRE approaches, see Software 

requirements engineering 
(SRE) approaches

SSM, see Soft systems methodology 
(SSM)

SSOV, see Simple scalar output variable 
(SSOV)

State machine diagram, 285

Status Change Specification (SCS), 151
STORM, see Synthetic Theater 

Operations Research Model 
(STORM)

Subject matter experts (SMEs), 257
Subject-Predicate-Object (SPO), 199
SUI, see System under 

investigation (SUI)
Syntactic Environment and 

Development and Exploitation 
Process (SEDEP), 384

Synthetic Theater Operations Research 
Model (STORM), 441

Systems modeled in novice projects, 61
Systems Modeling Language 

(SysML), 346
conceptual modeling with

activity diagram of kitting 
process, 293

Artisan Studio Uno, 291–292
block diagram for 

components, 295
block diagram for server product, 

296–297
challenges for, 301–303
cylindrical node use, 302
decision nodes for, 292
determining model 

content, 300
high degree of 

collaboration, 303
identifying model outputs and 

inputs, 300
internal block diagram for server 

product, 296–297
key assembly process, 291
“Kit Components” activity, 

292–293
libraries and profiles, difference 

between, 302
model-centric approach, 297
modeller, 299
model libraries, 302–303
model viewpoint of system, 301
original document-centric 

model, 301
overall production process, 

activity diagram of, 292
process flow diagrams, 291
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“rake” symbol, 293
real-world viewpoint 

of, 301
sequence diagram of 

information flow in 
ordering process, 298

simulation model view point of 
system, 301

SSM and PAMs, 299
“StartConveyor” step, 294
State Machine Diagram for 

conveyor, 294
stereotype use, 302
SUI, 299–300

diagrams and concepts
activity diagram, 285
block definition 

diagram, 283
internal block diagram, 283
package diagram, 285
parametric diagram, 285
requirements diagram, 285
sequence diagram, 285
state machine diagram, 285
UML, 283
use-case diagram, 285

diagram taxonomy, 284
foundation, 300
history

OMG, 282
revision task force, 283

retrospective use of, 482
and simulation, 289

CAD tool, 290
F-CAD system, 290
TGG approach, 290–291

strengths and weaknesses of
“semantic bloat,” 285–286
side benefits, 286
TSS team, 287
UML models, 286

template in Microsoft Visio, 289
tools

Artisan Studio, 288
CASE, 288
EmbeddedPlus Engineering, 288
Enterprise Architect, 288
MagicDraw, 288
Papyrus for SysML, 288

Rhapsody, 288
Tau G2, 288
TOPCASED-SysML, 288

as tools, 482
System under investigation (SUI), 134, 

299–300

T

Tactical Science Solution (TSS) 
team, 287

Template for level of detail by 
component type, 90

TGG approach, see Triple Graph 
Grammars (TGG) approach

Throughput model, 7
Timeline plot

for expert project, 62–63
for novice projects, 65

Transparency of conceptual 
modeling, 21

Triggered Activity in ABCmod 
framework, 153

Triple Graph Grammars (TGG) 
approach, 290–291

TSS team, see Tactical Science Solution 
(TSS) Team

U

UML, see Unified Modeling 
Language (UML)

UML-based conceptual models, 
verification

case studies, 407
conduct of, 408–409, 

411, 413
discussion and findings of, 

410–411
findings of, 413
inspector, 408
KAMA command hierarchy 

diagram with redundancy, 409
modelers, 408
multiple inheritance pattern 

in mission space diagram, 
occurrence, 412

setting, 411
software engineering experts, 408
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domain-specific notation, inspection 
approach for

asymmetry and deep inheritance, 
patterns, 403–404

intradiagram inspection, process, 
400, 405

KAMA notation, properties 
for, 399

mission space diagram 
inspection, 405

need for, 397–399
strength of relations, 

generalization, and transitivity 
patterns, 401–402

structural diagrams inspection 
phase, 400, 405

task flow diagram inspection 
phase, 405–407

formal techniques for
behavioral emphasis, approaches 

with, 394–395
and DOM, 392
FOL, 392–393
incorrect class diagram, 392
MOF, 393
structural emphasis, approaches 

with, 392–394
UML/OCL model, 

393–394
Z-Eves theorem, 393

inspections and reviews for
defect detection, 396–397
Object-Oriented Reading 

Techniques, 397
UML design inspection 

and, 397
properties for, 389, 392

CIM, 391
class and relation equivalence, 390
consistency of class diagram, 390
horizontal consistency, 391
object-oriented reading 

techniques, 391
OCL, 390

tool support for
MDSD, 395
open architecture-ware and GME, 

use, 395
PROMELA, 396

Unified conceptual model
contents component

BPD, 351
business process diagram, 350
conceptual model, scope of, 350

data requirement component
for entity patient, 351

diagrams used in, 347
inputs and outputs component, 350

decision variables, 349
influence diagram, 349

model-dependent component
system dynamics, representation 

of components, 352
objectives component

diagram, 348–349
fundamental objectives, 347–348
means objectives, 348

Unified Modeling Language (UML), 98, 
338, 482

Use-case diagram, 285
User-Defined Modules, 162–163

template for, 164
Utility of conceptual modeling, 17, 19

V

Validity of conceptual modeling, 17
Verification and validation (V&V)

of conceptual models for simulations
acceptability criteria (AC), 387
Boehm’s maxim, 385
DOD, 385–386
FEDEP, 387
informal techniques, 389
principles for, 387
process, 386–388
SME, 388
SQA, 386–388
techniques, 388–389
UML/KAMA use, 387

Verification, validation, and 
accreditation (VV&A), 486

Recommended Practices 
Guide, 430

VIMS, see Visual interactive modeling 
systems (VIMS)

Visual interaction and object 
orientation, 104
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Visual interactive modeling systems 
(VIMS), 107, 343

VV&A, see Verification, validation, and 
accreditation (VV&A)

W

Wafer factory simulation models
bottleneck machine, 454
complex model

bottleneck machine group, 
operators of, 457

deleting products in fab, 457
MIMAC, 456

computing distributions, 458
delay approach, predicting, 458

characteristic curve, 459
cycle time distribution, 460
single run to generate, 459

related work, 452
characteristic curve, 456

dummy machines, processing 
times of, 453

fab behavior over time, 455
new approach, basis, 454
predicting cycle times, 455
quartile-uniform variant, 453
simple models, 453–454

simple model
with number of lots in loop, 457
required characteristics for 

calibrating, 457–458
simple model with delay distribution 

in loop, 454
static distributions, 454
WIP evolution, 455

Who-What-Where-When-Why (5Ws), 199
Wicked problems, 234; see also Problem 

structuring methods (PSMs)
WIP, see Work in progress (WIP)
WITNESS software, 60
Work in progress (WIP), 455
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